Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Vet Res ; 55(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773540

ABSTRACT

In 2020, a new genotype of swine H1N2 influenza virus (H1avN2-HA 1C.2.4) was identified in France. It rapidly spread within the pig population and supplanted the previously predominant H1avN1-HA 1C.2.1 virus. To characterize this new genotype which is genetically and antigenically distant from the other H1avNx viruses detected in France, an experimental study was conducted to compare the outcomes of H1avN2 and H1avN1 infections in pigs and evaluate the protection conferred by the only inactivated vaccine currently licensed in Europe containing an HA 1C (clade 1C.2.2) antigen. Infection with H1avN2 induced stronger clinical signs and earlier shedding than H1avN1. The neutralizing antibodies produced following H1avN2 infection were unable to neutralize H1avN1, and vice versa, whereas the cellular-mediated immunity cross-reacted. Vaccination slightly altered the impact of H1avN2 infection at the clinical level, but did not prevent shedding of infectious virus particles. It induced a cellular-mediated immune response towards H1avN2, but did not produce neutralizing antibodies against this virus. As in vaccinated animals, animals previously infected by H1avN1 developed a cross-reacting cellular immune response but no neutralizing antibodies against H1avN2. However, H1avN1 pre-infection induced a better protection against the H1avN2 infection than vaccination, probably due to higher levels of non-neutralizing antibodies and a mucosal immunity. Altogether, these results showed that the new H1avN2 genotype induced a severe respiratory infection and that the actual vaccine was less effective against this H1avN2-HA 1C.2.4 than against H1avN1-HA 1C.2.1, which may have contributed to the H1avN2 epizootic and dissemination in pig farms in France.


Subject(s)
Genotype , Influenza A Virus, H1N2 Subtype , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , France/epidemiology , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/immunology , Virulence , Antibodies, Neutralizing/blood , Immunity, Cellular
2.
Sci Data ; 11(1): 334, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575638

ABSTRACT

Accurate mapping and monitoring of tropical forests aboveground biomass (AGB) is crucial to design effective carbon emission reduction strategies and improving our understanding of Earth's carbon cycle. However, existing large-scale maps of tropical forest AGB generated through combinations of Earth Observation (EO) and forest inventory data show markedly divergent estimates, even after accounting for reported uncertainties. To address this, a network of high-quality reference data is needed to calibrate and validate mapping algorithms. This study aims to generate reference AGB datasets using field inventory plots and airborne LiDAR data for eight sites in Central Africa and five sites in South Asia, two regions largely underrepresented in global reference AGB datasets. The study provides access to these reference AGB maps, including uncertainty maps, at 100 m and 40 m spatial resolutions covering a total LiDAR footprint of 1,11,650 ha [ranging from 150 to 40,000 ha at site level]. These maps serve as calibration/validation datasets to improve the accuracy and reliability of AGB mapping for current and upcoming EO missions (viz., GEDI, BIOMASS, and NISAR).


Subject(s)
Forests , Trees , Tropical Climate , Africa, Central , Asia, Southern , Biomass , Reproducibility of Results
3.
Nature ; 625(7996): 728-734, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200314

ABSTRACT

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Subject(s)
Forests , Trees , Tropical Climate , Biodiversity , Trees/anatomy & histology , Trees/classification , Trees/growth & development , Africa , Asia, Southeastern
4.
Sci Adv ; 9(48): eadh2708, 2023 12.
Article in English | MEDLINE | ID: mdl-38019914

ABSTRACT

Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation.


Subject(s)
Epigenesis, Genetic , Stromal Cells , Animals , Humans , Mice , Cell Differentiation/genetics , Inflammation , Jumonji Domain-Containing Histone Demethylases/genetics , Up-Regulation
5.
Glob Chang Biol ; 28(17): 5254-5268, 2022 09.
Article in English | MEDLINE | ID: mdl-35703577

ABSTRACT

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.


Subject(s)
Forests , Trees , Biomass , Carbon/metabolism , Carbon Cycle , Ecosystem , Trees/physiology
6.
Viruses ; 13(11)2021 10 27.
Article in English | MEDLINE | ID: mdl-34834975

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A virus (swIAV) are major pathogens of the porcine respiratory disease complex, but little is known on their interaction in super-infected pigs. In this study, we investigated clinical, virological and immunological outcomes of successive infections with PRRSV-1 and H1N2 swIAV. Twenty-four specific pathogen-free piglets were distributed into four groups and inoculated either with PRRSV at study day (SD) 0, or with swIAV at SD8, or with PRRSV and swIAV one week apart at SD0 and SD8, respectively, or mock-inoculated. In PRRSV/swIAV group, the clinical signs usually observed after swIAV infection were attenuated while higher levels of anti-swIAV antibodies were measured in lungs. Concurrently, PRRSV multiplication in lungs was significantly affected by swIAV infection, whereas the cell-mediated immune response specific to PRRSV was detected earlier in blood, as compared to PRRSV group. Moreover, levels of interferon (IFN)-α measured from SD9 in the blood of super-infected pigs were lower than those measured in the swIAV group, but higher than in the PRRSV group at the same time. Correlation analyses suggested an important role of IFN-α in the two-way interference highlighted between both viral infections.


Subject(s)
Influenza A Virus, H1N2 Subtype/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , Immunity , Influenza A virus/immunology , Interferon-alpha , Lung/immunology , Orthomyxoviridae Infections/virology , Specific Pathogen-Free Organisms , Swine , Swine Diseases/virology
7.
Nature ; 596(7873): 488-490, 2021 08.
Article in English | MEDLINE | ID: mdl-34433939

Subject(s)
Carbon , Forests , Trees
8.
Vaccines (Basel) ; 9(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917103

ABSTRACT

Modified-live vaccines (MLVs) against porcine reproductive and respiratory syndrome viruses (PRRSVs) are usually administrated to piglets at weaning when swine influenza A virus (swIAV) infections frequently occur. SwIAV infection induces a strong interferon alpha (IFNa) response and IFNa was shown to abrogate PRRSV2 MLV replication and an inherent immune response. In this study, we evaluated the impacts of swIAV infection on the replication of a PRRSV1 MLV (MLV1), post-vaccine immune responses and post-challenge vaccine efficacy at both the systemic and pulmonary levels. Piglets were either swIAV inoculated and MLV1 vaccinated 6 h apart or singly vaccinated or mock inoculated and mock vaccinated. Four weeks after vaccination, the piglets were challenged with a PRRSV1 field strain. The results showed that swIAV infection delayed MLV1 viremia by six days and post-vaccine seroconversion by four days. After the PRRSV1 challenge, the swIAV enhanced the PRRSV1-specific cell-mediated immunity (CMI) but the PRRSV1 field strain viremia was not better controlled. High IFNa levels that were detected early after swIAV infection could have been responsible for both the inhibition of MLV1 replication and CMI enhancement. Thus, whereas swIAV infection had a negative impact on humoral responses post-vaccination, it did not interfere with the protective effectiveness of the PRRSV MLV1 in our experimental conditions.

9.
Nature ; 593(7857): 90-94, 2021 05.
Article in English | MEDLINE | ID: mdl-33883743

ABSTRACT

Africa is forecasted to experience large and rapid climate change1 and population growth2 during the twenty-first century, which threatens the world's second largest rainforest. Protecting and sustainably managing these African forests requires an increased understanding of their compositional heterogeneity, the environmental drivers of forest composition and their vulnerability to ongoing changes. Here, using a very large dataset of 6 million trees in more than 180,000 field plots, we jointly model the distribution in abundance of the most dominant tree taxa in central Africa, and produce continuous maps of the floristic and functional composition of central African forests. Our results show that the uncertainty in taxon-specific distributions averages out at the community level, and reveal highly deterministic assemblages. We uncover contrasting floristic and functional compositions across climates, soil types and anthropogenic gradients, with functional convergence among types of forest that are floristically dissimilar. Combining these spatial predictions with scenarios of climatic and anthropogenic global change suggests a high vulnerability of the northern and southern forest margins, the Atlantic forests and most forests in the Democratic Republic of the Congo, where both climate and anthropogenic threats are expected to increase sharply by 2085. These results constitute key quantitative benchmarks for scientists and policymakers to shape transnational conservation and management strategies that aim to provide a sustainable future for central African forests.


Subject(s)
Global Warming/statistics & numerical data , Rainforest , Trees/classification , Acclimatization , Africa, Central , Datasets as Topic , Flowers , Human Activities , Humans , Population Growth , Seasons , Sustainable Development , Temperature , Trees/growth & development
10.
Ann Bot ; 128(6): 753-766, 2021 10 27.
Article in English | MEDLINE | ID: mdl-33876194

ABSTRACT

BACKGROUND AND AIMS: Terrestrial LiDAR scanning (TLS) data are of great interest in forest ecology and management because they provide detailed 3-D information on tree structure. Automated pipelines are increasingly used to process TLS data and extract various tree- and plot-level metrics. With these developments comes the risk of unknown reliability due to an absence of systematic output control. In the present study, we evaluated the estimation errors of various metrics, such as wood volume, at tree and plot levels for four automated pipelines. METHODS: We used TLS data collected from a 1-ha plot of tropical forest, from which 391 trees >10 cm in diameter were fully processed using human assistance to obtain control data for tree- and plot-level metrics. KEY RESULTS: Our results showed that fully automated pipelines led to median relative errors in the quantitative structural model (QSM) volume ranging from 39 to 115 % at the tree level and 10 to 134 % at the 1-ha plot level. For tree-level metrics, the median error for the crown-projected area ranged from 46 to 59 % and that for the crown-hull volume varied from 72 to 88 %. This result suggests that the tree isolation step is the weak link in automated pipeline methods. We further analysed how human assistance with automated pipelines can help reduce the error in the final QSM volume. At the tree scale, we found that isolating trees using human assistance reduced the error in wood volume by a factor of 10. At the 1-ha plot scale, locating trees with human assistance reduced the error by a factor of 3. CONCLUSIONS: Our results suggest that in complex tropical forests, fully automated pipelines may provide relatively unreliable metrics at the tree and plot levels, but limited human assistance inputs can significantly reduce errors.


Subject(s)
Forests , Tropical Climate , Reproducibility of Results , Wood
11.
Viruses ; 12(11)2020 11 13.
Article in English | MEDLINE | ID: mdl-33202972

ABSTRACT

This study evaluated the genetic and antigenic evolution of swine influenza A viruses (swIAV) of the two main enzootic H1 lineages, i.e., HA-1C (H1av) and -1B (H1hu), circulating in France between 2000 and 2018. SwIAV RNAs extracted from 1220 swine nasal swabs were hemagglutinin/neuraminidase (HA/NA) subtyped by RT-qPCRs, and 293 virus isolates were sequenced. In addition, 146 H1avNy and 105 H1huNy strains were submitted to hemagglutination inhibition tests. H1avN1 (66.5%) and H1huN2 (25.4%) subtypes were predominant. Most H1 strains belonged to HA-1C.2.1 or -1B.1.2.3 clades, but HA-1C.2, -1C.2.2, -1C.2.3, -1B.1.1, and -1B.1.2.1 clades were also detected sporadically. Within HA-1B.1.2.3 clade, a group of strains named "Δ146-147" harbored several amino acid mutations and a double deletion in HA, that led to a marked antigenic drift. Phylogenetic analyses revealed that internal segments belonged mainly to the "Eurasian avian-like lineage", with two distinct genogroups for the M segment. In total, 17 distinct genotypes were identified within the study period. Reassortments of H1av/H1hu strains with H1N1pdm virus were rarely evidenced until 2018. Analysis of amino acid sequences predicted a variability in length of PB1-F2 and PA-X proteins and identified the appearance of several mutations in PB1, PB1-F2, PA, NP and NS1 proteins that could be linked to virulence, while markers for antiviral resistance were identified in N1 and N2. Altogether, diversity and evolution of swIAV recall the importance of disrupting the spreading of swIAV within and between pig herds, as well as IAV inter-species transmissions.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Animals , Evolution, Molecular , France , Genotype , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Neuraminidase/genetics , Neuraminidase/metabolism , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Sequence Analysis, DNA , Sequence Analysis, RNA , Swine
12.
Nat Commun ; 11(1): 4540, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917875

ABSTRACT

Mapping aboveground forest biomass is central for assessing the global carbon balance. However, current large-scale maps show strong disparities, despite good validation statistics of their underlying models. Here, we attribute this contradiction to a flaw in the validation methods, which ignore spatial autocorrelation (SAC) in data, leading to overoptimistic assessment of model predictive power. To illustrate this issue, we reproduce the approach of large-scale mapping studies using a massive forest inventory dataset of 11.8 million trees in central Africa to train and validate a random forest model based on multispectral and environmental variables. A standard nonspatial validation method suggests that the model predicts more than half of the forest biomass variation, while spatial validation methods accounting for SAC reveal quasi-null predictive power. This study underscores how a common practice in big data mapping studies shows an apparent high predictive power, even when predictors have poor relationships with the ecological variable of interest, thus possibly leading to erroneous maps and interpretations.

13.
Sci Data ; 7(1): 221, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641808

ABSTRACT

Forest biomass is key in Earth carbon cycle and climate system, and thus under intense scrutiny in the context of international climate change mitigation initiatives (e.g. REDD+). In tropical forests, the spatial distribution of aboveground biomass (AGB) remains, however, highly uncertain. There is increasing recognition that progress is strongly limited by the lack of field observations over large and remote areas. Here, we introduce the Congo basin Forests AGB (CoFor-AGB) dataset that contains AGB estimations and associated uncertainty for 59,857 1-km pixels aggregated from nearly 100,000 ha of in situ forest management inventories for the 2000 - early 2010s period in five central African countries. A comprehensive error propagation scheme suggests that the uncertainty on AGB estimations derived from c. 0.5-ha inventory plots (8.6-15.0%) is only moderately higher than the error obtained from scientific sampling plots (8.3%). CoFor-AGB provides the first large scale view of forest AGB spatial variation from field data in central Africa, the second largest continuous tropical forest domain of the world.


Subject(s)
Biomass , Forests , Tropical Climate , Africa, Central , Climate Change , Conservation of Natural Resources , Environmental Monitoring , Trees
14.
Sci Rep ; 10(1): 2001, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029780

ABSTRACT

Wood density (WD) relates to important tree functions such as stem mechanics and resistance against pathogens. This functional trait can exhibit high intraindividual variability both radially and vertically. With the rise of LiDAR-based methodologies allowing nondestructive tree volume estimations, failing to account for WD variations related to tree function and biomass investment strategies may lead to large systematic bias in AGB estimations. Here, we use a unique destructive dataset from 822 trees belonging to 51 phylogenetically dispersed tree species harvested across forest types in Central Africa to determine vertical gradients in WD from the stump to the branch tips, how these gradients relate to regeneration guilds and their implications for AGB estimations. We find that decreasing WD from the tree base to the branch tips is characteristic of shade-tolerant species, while light-demanding and pioneer species exhibit stationary or increasing vertical trends. Across all species, the WD range is narrower in tree crowns than at the tree base, reflecting more similar physiological and mechanical constraints in the canopy. Vertical gradients in WD induce significant bias (10%) in AGB estimates when using database-derived species-average WD data. However, the correlation between the vertical gradients and basal WD allows the derivation of general correction models. With the ongoing development of remote sensing products providing 3D information for entire trees and forest stands, our findings indicate promising ways to improve greenhouse gas accounting in tropical countries and advance our understanding of adaptive strategies allowing trees to grow and survive in dense rainforests.


Subject(s)
Adaptation, Physiological , Ecological Parameter Monitoring/methods , Remote Sensing Technology/methods , Trees/physiology , Wood/physiology , Africa, Central , Biomass , Carbon Cycle/physiology , Ecological Parameter Monitoring/instrumentation , Greenhouse Effect , Greenhouse Gases/analysis , Lasers , Models, Biological , Rainforest , Remote Sensing Technology/instrumentation
15.
Viruses ; 12(1)2019 12 24.
Article in English | MEDLINE | ID: mdl-31878133

ABSTRACT

In order to assess influenza D virus (IDV) infections in swine in France, reference reagents were produced in specific pathogen free pigs to ensure serological and virological analyses. Hemagglutination inhibition (HI) assays were carried out on 2090 domestic pig sera collected in 2012-2018 in 102 farms. Only 31 sera from breeding sows sampled in 2014-2015 in six farrow-to-finish herds with respiratory disorders contained IDV-specific antibodies. In two of them, within-herd percentage of positive samples (73.3% and 13.3%, respectively) and HI titers (20-160) suggested IDV infections, but virus persistence was not confirmed following new sampling in 2017. All growing pigs tested seronegative, whatever their age and the sampling year. Moreover, PB1-gene RT-qPCR performed on 452 nasal swabs taken in 2015-2018 on pigs with acute respiratory syndrome (137 farms) gave negative results. In Corse, a Mediterranean island where pigs are mainly bred free-range, 2.3% of sera (n = 177) sampled on adult pigs in 2013-2014 obtained low HI titers. Finally, 0.5% of sera from wild boars hunted in 2009-2016 (n = 644) tested positive with low HI titers. These results provide the first serological evidence that sows were exposed to IDV in France but with a limited spread within the swine population.


Subject(s)
Antibodies, Viral/blood , Orthomyxoviridae Infections/veterinary , Swine Diseases/epidemiology , Swine Diseases/virology , Thogotovirus/immunology , Animals , Breeding , Farms , Female , France/epidemiology , Hemagglutination Inhibition Tests , Orthomyxoviridae Infections/epidemiology , Specific Pathogen-Free Organisms , Sus scrofa/virology , Swine/virology , Thogotovirus/genetics
16.
Acta Orthop Belg ; 85(3): 297-304, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31677625

ABSTRACT

Malunion in cubitus varus most often results from inadequate supracondylar fracture reduction or from secondary displacement. Treatment of cubitus varus needs an accurate preoperative planning to obtain a good functional and esthetical outcome. Planning based on conventional radiology is source of inaccuracy and clinical results are variable. Developments of computer-assisted orthopaedic surgery (CAOS) and of patient specific instruments (PSI) have made accurate three dimensional (3D) preoperative simulation possible. This original technique based on 3D-osteotomy planning and using PSI was developed to correct cubitus varus deformity in the three dimensions. A 3D-model of the deformity was created based on a CT-scan of the distal humerus. Ideal correction was calculated by software and a PSI was designed. The PSI was used to guide the saw blade on the deformed bone. After resection of a wedge fragment, osteosynthesis was performed using two crossed K-wires. Elbow radiographs were performed at least six months after surgery. At the latest follow-up, the correction of cubitus varus obtained was satisfying in the five cases of our series and all the patients had pain free elbow mobility. Ulnar nerve palsy complicated the evolution in one patient, which fully recovered within 6 months. Advantages of this technique include a decreased operating time and a smaller surgical incision. More-over, results showed increased correction accuracy without the need of fluoroscopy during the osteotomy procedure. These benefits are counterbalanced by the need of a preoperative CT-scan of the distal humerus and the additional cost for the PSI.


Subject(s)
Elbow Joint/surgery , Joint Prosthesis , Osteotomy/methods , Prosthesis Design/methods , Adolescent , Bone Wires , Child , Elbow Joint/abnormalities , Elbow Joint/diagnostic imaging , Female , Humans , Humeral Fractures/complications , Humeral Fractures/diagnostic imaging , Humeral Fractures/surgery , Imaging, Three-Dimensional , Male , Osteotomy/instrumentation , Surgery, Computer-Assisted/instrumentation , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
17.
Vet Res ; 50(1): 77, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31590684

ABSTRACT

This report describes the detection of a triple reassortant swine influenza A virus of H1avN2 subtype. It evolved from an avian-like swine H1avN1 that first acquired the N2 segment from a seasonal H3N2, then the M segment from a 2009 pandemic H1N1, in two reassortments estimated to have occurred 10 years apart. This study illustrates how recurrent influenza infections increase the co-infection risk and facilitate evolutionary jumps by successive gene exchanges. It recalls the importance of appropriate biosecurity measures inside holdings to limit virus persistence and interspecies transmissions, which both contribute to the emergence of new potentially zoonotic viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N2 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Reassortant Viruses/physiology , Swine Diseases/virology , Animals , France , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Sus scrofa , Swine
18.
Lancet Oncol ; 20(12): 1740-1749, 2019 12.
Article in English | MEDLINE | ID: mdl-31629656

ABSTRACT

BACKGROUND: Radiotherapy is the standard salvage treatment after radical prostatectomy. To date, the role of androgen deprivation therapy has not been formally shown. In this follow-up study, we aimed to update the results of the GETUG-AFU 16 trial, which assessed the efficacy of radiotherapy plus androgen suppression versus radiotherapy alone. METHODS: GETUG-AFU 16 was an open-label, multicentre, phase 3, randomised, controlled trial that enrolled men (aged ≥18 years) with Eastern Cooperative Oncology Group performance status of 0 or 1, with histologically confirmed adenocarcinoma of the prostate (but no previous androgen suppression or pelvic radiotherapy), stage pT2, T3, or T4a (bladder neck involvement only) and pN0 or pNx according to the tumour, node, metastasis (TNM) staging system, whose prostate-specific antigen (PSA) concentration increased from 0·1 ng/mL to between 0·2 ng/mL and 2·0 ng/mL after radical prostatectomy, without evidence of clinical disease. Patients were assigned through central randomisation (1:1) to short-term androgen suppression (subcutaneous injection of 10·8 mg goserelin on the first day of irradiation and 3 months later) plus radiotherapy (3D conformal radiotherapy or intensity modulated radiotherapy of 66 Gy in 33 fractions, 5 days a week for 7 weeks) or radiotherapy alone. Randomisation was stratified using a permuted block method (block sizes of two and four) according to investigational site, radiotherapy modality, and prognosis. The primary endpoint was progression-free survival in the intention-to-treat population. This post-hoc one-shot data collection done 4 years after last data cutoff included patients who were alive at the time of the primary analysis and updated long-term patient status by including dates for first local progression, metastatic disease diagnosis, or death (if any of these had occurred) or the date of the last tumour evaluation or last PSA measurement. Survival at 120 months was reported. Late serious adverse effects were assessed. This trial is registered on ClinicalTrials.gov, NCT00423475. FINDINGS: Between Oct 19, 2006, and March 30, 2010, 743 patients were randomly assigned, 374 to radiotherapy alone and 369 to radiotherapy plus goserelin. At the time of data cutoff (March 12, 2019), the median follow-up was 112 months (IQR 102-123). The 120-month progression-free survival was 64% (95% CI 58-69) for patients treated with radiotherapy plus goserelin and 49% (43-54) for patients treated with radiotherapy alone (hazard ratio 0·54, 0·43-0·68; stratified log-rank test p<0·0001). Two cases of secondary cancer occurred since the primary analysis, but were not considered to be treatment related. No treatment-related deaths occurred. INTERPRETATION: The 120-month progression-free survival confirmed the results from the primary analysis. Salvage radiotherapy combined with short-term androgen suppression significantly reduced risk of biochemical or clinical progression and death compared with salvage radiotherapy alone. The results of the GETUG-AFU 16 trial confirm the efficacy of androgen suppression plus radiotherapy as salvage treatment in patients with increasing PSA concentration after radical prostatectomy for prostate cancer. FUNDING: The French Health ministry, AstraZeneca, la Ligue Contre le Cancer, and La Ligue de Haute-Savoie.


Subject(s)
Adenocarcinoma/therapy , Androgen Antagonists/therapeutic use , Chemoradiotherapy/mortality , Prostatectomy/mortality , Prostatic Neoplasms/therapy , Radiotherapy, Conformal/mortality , Salvage Therapy , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Aged , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Survival Rate
19.
J Virol ; 92(24)2018 12 15.
Article in English | MEDLINE | ID: mdl-30258006

ABSTRACT

The H1N1 influenza virus responsible for the most recent pandemic in 2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm strains between 2009 and 2017, regardless of the season, and findings were not correlated with pig density. From these isolates, 17 whole-genome sequences were obtained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in order to perform spatial and temporal analyses of genetic diversity and to compare evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following mutation accumulation and fixation over time, phylogenetic analyses revealed for the first time the divergence of a swine-specific genogroup within the H1N1pdm lineage. The divergence is thought to have occurred around 2011, although this was demonstrated only through strains isolated in 2015 to 2016 in the southern half of France. To date, these H1N1pdm swine strains have not been related to any increased virulence in swine herds and have not exhibited any antigenic drift compared to seasonal human strains. However, further monitoring is encouraged, as diverging evolutionary patterns in these two species, i.e., swine and humans, may lead to the emergence of viruses with a potentially higher risk to both animal and human health.IMPORTANCE Pigs are a "mixing vessel" for influenza A viruses (IAVs) because of their ability to be infected by avian and human IAVs and their propensity to facilitate viral genomic reassortment events. Also, as IAVs may evolve differently in swine and humans, pigs can become a reservoir for old human strains against which the human population has become immunologically naive. Thus, viruses from the novel swine-specific H1N1pdm genogroup may continue to diverge from seasonal H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the emergence of viruses that would not be covered by human vaccines and/or swine vaccines based on antigens closely related to the original H1N1pdm virus. This discovery confirms the importance of encouraging swine IAV monitoring because H1N1pdm swine viruses could carry an increased risk to both human and swine health in the future as a whole H1N1pdm virus or gene provider in subsequent reassortant viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype/classification , Orthomyxoviridae Infections/epidemiology , Swine Diseases/virology , Whole Genome Sequencing/methods , Animals , Evolution, Molecular , France/epidemiology , Hemagglutinins/genetics , Influenza A Virus, H1N1 Subtype/genetics , Neuraminidase/genetics , Orthomyxoviridae Infections/virology , Pandemics , Phylogeny , Population Surveillance , Spatio-Temporal Analysis , Swine , Swine Diseases/epidemiology , Viral Proteins/genetics , Whole Genome Sequencing/veterinary
20.
Prev Vet Med ; 157: 94-98, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30086855

ABSTRACT

Corsica is a mountainous French island in the north-western Mediterranean Sea. It is a rural area, where pig farming is a major economic activity. Although no acute respiratory outbreaks due to swine influenza A viruses (swIAVs) have ever been reported in this free-ranging pig breeding system, influenza A viruses (IAVs) could be circulating within this pig population. A serological study was conducted as a first approach to domestic pigs and wild boars. Serum samples from 543 pigs raised on 91 different farms were collected during the 2013-2014 slaughtering season, and 279 sera from wild boars were obtained over four hunting seasons (between 2009 and 2014). They were first analysed by ELISA and then IAV positive and doubtful sera were subjected to haemagglutination inhibition tests using antigens representative of the four major enzootic swIAV lineages in Europe, i.e. avian-like swine H1N1 (H1avN1), pandemic-like swine H1N1 (H1N1pdm), H1N2 and H3N2. According to the ELISA results, 26.4% (CI95%: 17.7-36.7%) of herds had at least one positive animal (positive or doubtful by ELISA) and 12.4% (CI95%: 7.8-19.8%) of the pigs tested positive. Using the test characteristics (sensitivity and specificity), the true seroprevalence among Corsican pigs was estimated to be 16.4% (95% CI: 9.9-26.3). Antibodies directed against two different viral lineages were identified: H1N1pdm (in 66.2% and 45.8% of the IAV positive pigs and farms respectively) and H1avN1 (15.0% and 20.8% respectively). Evidence of exposure to viruses from two distinct lineages were detected on a single farm but in two different animals. Among the wild boars, 1.4% (CI95%: 0.4-3.6%) tested positive by ELISA and antibodies against the same two viruses were detected. Altogether, these results suggest that swIAVs from at least two different lineages are circulating among Corsican pigs, i.e. the H1N1pdm virus, probably introduced during the 2009 pandemic, and the H1avN1 virus, which is the most frequent swIAV in Europe. The low frequency of positive results observed in the Corsican wild boars hunted suggests that they would not play a major role in IAV dispersion dynamics on the island.


Subject(s)
Antibodies, Viral/blood , Influenza A virus/immunology , Orthomyxoviridae Infections/veterinary , Swine Diseases/epidemiology , Animals , France/epidemiology , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Islands , Mediterranean Islands , Orthomyxoviridae Infections/epidemiology , Seroepidemiologic Studies , Surveys and Questionnaires , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...