Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 142: 104854, 2022 11.
Article in English | MEDLINE | ID: mdl-36084846

ABSTRACT

Striking an obstacle while walking can be dangerous, reflecting the higher risks of losing one's balance, tripping and falling. Particular situations during which internal resources are limited, such as in a fatigued state, may impair performance when crossing obstacles, enhancing the risks of falls or accidents. Our goal was thus to review the effects of experimentally-induced fatigue (EIF) on gait parameters during obstacle crossing by healthy individuals. We systematically searched PubMed and Web of Science databases using 'fatigue', 'obstacle crossing' and their equivalent terms to extract data from studies investigating this domain. Nine studies were found. First, EIF-related effects on kinetics, EMG and obstacle contacts have been poorly studied. Second, consistent and inconsistent results were found in the kinematic outcomes after EIF. Consistent results included reductions in stride duration and increased step width. Inconsistent results included gait velocity (no-effect vs increased), leading and trailing-foot vertical clearance (reduced vs increased) and horizontal distance from foot to the obstacle before obstacle avoidance (no-effect vs increased). These findings should be interpreted cautiously, however, due to the heterogeneity of the obstacle crossing and EIF protocols.


Subject(s)
Gait , Walking , Humans , Foot , Biomechanical Phenomena , Kinetics
2.
Ergonomics ; 57(6): 934-42, 2014.
Article in English | MEDLINE | ID: mdl-24697241

ABSTRACT

The aim of this study was to evaluate the effects of muscle fatigue of triceps surae and quadriceps muscles in stepping down in ongoing gait. We expected that the subjects would compensate for muscle fatigue to prevent potential loss of balance in stepping down. A total of 10 young participants walked over a walkway at a self-selected velocity to step down a height difference of 10-cm halfway. Five trials were performed before and after a muscle fatigue protocol. Participants performed two fatigue protocols: one for ankle muscle fatigue and another for knee muscle fatigue. Kinematics of and ground reaction forces on the leading leg were recorded. Fatigue did not cause a change in the frequency of heel or toe landing. Our results indicate that in stepping down fatigue effects are compensated by redistributing work to unfatigued muscle groups and by gait changes aimed at enhancing balance control, which was however only partially successful.


Subject(s)
Gait/physiology , Muscle Fatigue/physiology , Quadriceps Muscle/physiopathology , Adult , Biomechanical Phenomena/physiology , Female , Humans , Male , Postural Balance/physiology , Walking/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...