Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
2.
Nat Chem ; 14(7): 754-765, 2022 07.
Article in English | MEDLINE | ID: mdl-35764792

ABSTRACT

Natural products that contain ortho-quinones show great potential as anticancer agents but have been largely discarded from clinical development because their redox-cycling behaviour results in general systemic toxicity. Here we report conjugation of ortho-quinones to a carrier, which simultaneously masks their underlying redox activity. C-benzylation at a quinone carbonyl forms a redox-inactive benzyl ketol. Upon a specific enzymatic trigger, an acid-promoted, self-immolative C-C bond-cleaving 1,6-elimination mechanism releases the redox-active hydroquinone inside cells. By using a 5-lipoxygenase modulator, ß-lapachone, we created cathepsin-B-cleavable quinone prodrugs. We applied the strategy for intracellular release of ß-lapachone upon antibody-mediated delivery. Conjugation of protected ß-lapachone to Gem-IgG1 antibodies, which contain the variable region of gemtuzumab, results in homogeneous, systemically non-toxic and conditionally stable CD33+-specific antibody-drug conjugates with in vivo efficacy against a xenograft murine model of acute myeloid leukaemia. This protection strategy could allow the use of previously overlooked natural products as anticancer agents, thus extending the range of drugs available for next-generation targeted therapeutics.


Subject(s)
Antineoplastic Agents , Biological Products , Prodrugs , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Mice , Oxidation-Reduction , Prodrugs/pharmacology , Prodrugs/therapeutic use , Quinones
3.
Nat Commun ; 12(1): 7198, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893601

ABSTRACT

RNA molecules undergo a vast array of chemical post-transcriptional modifications (PTMs) that can affect their structure and interaction properties. In recent years, a growing number of PTMs have been successfully mapped to the transcriptome using experimental approaches relying on high-throughput sequencing. Oxford Nanopore direct-RNA sequencing has been shown to be sensitive to RNA modifications. We developed and validated Nanocompore, a robust analytical framework that identifies modifications from these data. Our strategy compares an RNA sample of interest against a non-modified control sample, not requiring a training set and allowing the use of replicates. We show that Nanocompore can detect different RNA modifications with position accuracy in vitro, and we apply it to profile m6A in vivo in yeast and human RNAs, as well as in targeted non-coding RNAs. We confirm our results with orthogonal methods and provide novel insights on the co-occurrence of multiple modified residues on individual RNA molecules.


Subject(s)
Nanopore Sequencing/methods , Nanopores , RNA/metabolism , Sequence Analysis, RNA/methods , Base Sequence , Computational Biology , Gene Expression Profiling , Genetic Techniques , High-Throughput Nucleotide Sequencing , Humans , RNA/isolation & purification , RNA Processing, Post-Transcriptional , Software , Transcriptome
4.
Brief Funct Genomics ; 20(2): 94-105, 2021 03 27.
Article in English | MEDLINE | ID: mdl-33564819

ABSTRACT

Post-synthesis modification of biomolecules is an efficient way of regulating and optimizing their functions. The human epitranscriptome includes a variety of more than 100 modifications known to exist in all RNA subtypes. Modifications of non-coding RNAs are particularly interesting since they can directly affect their structure, stability, interaction and function. Indeed, non-coding RNAs such as tRNA and rRNA are the most modified RNA species in eukaryotic cells. In the last 20 years, new functions of non-coding RNAs have been discovered and their involvement in human disease, including cancer, became clear. In this review, we will present the evidence connecting modifications of different non-coding RNA subtypes and their role in cancer.


Subject(s)
Epigenesis, Genetic , Neoplasms , Humans , Neoplasms/genetics , RNA/metabolism , RNA Processing, Post-Transcriptional , RNA, Transfer
6.
Blood ; 136(14): 1657-1669, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32573700

ABSTRACT

Anaplastic large cell lymphoma (ALCL) is a T-cell malignancy predominantly driven by a hyperactive anaplastic lymphoma kinase (ALK) fusion protein. ALK inhibitors, such as crizotinib, provide alternatives to standard chemotherapy with reduced toxicity and side effects. Children with lymphomas driven by nucleophosmin 1 (NPM1)-ALK fusion proteins achieved an objective response rate to ALK inhibition therapy of 54% to 90% in clinical trials; however, a subset of patients progressed within the first 3 months of treatment. The mechanism for the development of ALK inhibitor resistance is unknown. Through genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) activation and knockout screens in ALCL cell lines, combined with RNA sequencing data derived from ALK inhibitor-relapsed patient tumors, we show that resistance to ALK inhibition by crizotinib in ALCL can be driven by aberrant upregulation of interleukin 10 receptor subunit alpha (IL10RA). Elevated IL10RA expression rewires the STAT3 signaling pathway, bypassing otherwise critical phosphorylation by NPM1-ALK. IL-10RA expression does not correlate with response to standard chemotherapy in pediatric patients, suggesting that a combination of crizotinib and chemotherapy could prevent ALK inhibitor resistance-specific relapse.


Subject(s)
Antineoplastic Agents/pharmacology , Crizotinib/pharmacology , Drug Resistance, Neoplasm/genetics , Interleukin-10 Receptor alpha Subunit/genetics , Lymphoma, Large-Cell, Anaplastic/genetics , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/genetics , Antineoplastic Agents/therapeutic use , CRISPR-Cas Systems , Cell Line , Crizotinib/therapeutic use , Dose-Response Relationship, Drug , Gene Editing , Gene Expression , Humans , Immunohistochemistry , Interleukin-10 Receptor alpha Subunit/metabolism , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/metabolism , Lymphoma, Large-Cell, Anaplastic/pathology , Models, Biological , Nucleophosmin , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
7.
Nat Rev Cancer ; 20(6): 303-322, 2020 06.
Article in English | MEDLINE | ID: mdl-32300195

ABSTRACT

Specific chemical modifications of biological molecules are an efficient way of regulating molecular function, and a plethora of downstream signalling pathways are influenced by the modification of DNA and proteins. Many of the enzymes responsible for regulating protein and DNA modifications are targets of current cancer therapies. RNA epitranscriptomics, the study of RNA modifications, is the new frontier of this arena. Despite being known since the 1970s, eukaryotic RNA modifications were mostly identified on transfer RNA and ribosomal RNA until the last decade, when they have been identified and characterized on mRNA and various non-coding RNAs. Increasing evidence suggests that RNA modification pathways are also misregulated in human cancers and may be ideal targets of cancer therapy. In this Review we highlight the RNA epitranscriptomic pathways implicated in cancer, describing their biological functions and their connections to the disease.


Subject(s)
Epigenesis, Genetic/genetics , Neoplasms/genetics , Neoplasms/metabolism , RNA Processing, Post-Transcriptional/physiology , RNA/metabolism , Epigenesis, Genetic/physiology , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , RNA/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Mol Cell ; 74(6): 1278-1290.e9, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31031083

ABSTRACT

7-methylguanosine (m7G) is present at mRNA caps and at defined internal positions within tRNAs and rRNAs. However, its detection within low-abundance mRNAs and microRNAs (miRNAs) has been hampered by a lack of sensitive detection strategies. Here, we adapt a chemical reactivity assay to detect internal m7G in miRNAs. Using this technique (Borohydride Reduction sequencing [BoRed-seq]) alongside RNA immunoprecipitation, we identify m7G within a subset of miRNAs that inhibit cell migration. We show that the METTL1 methyltransferase mediates m7G methylation within miRNAs and that this enzyme regulates cell migration via its catalytic activity. Using refined mass spectrometry methods, we map m7G to a single guanosine within the let-7e-5p miRNA. We show that METTL1-mediated methylation augments let-7 miRNA processing by disrupting an inhibitory secondary structure within the primary miRNA transcript (pri-miRNA). These results identify METTL1-dependent N7-methylation of guanosine as a new RNA modification pathway that regulates miRNA structure, biogenesis, and cell migration.


Subject(s)
Guanosine/analogs & derivatives , Methyltransferases/genetics , MicroRNAs/genetics , RNA Processing, Post-Transcriptional , A549 Cells , Base Sequence , Biological Assay , Caco-2 Cells , Cell Movement , Cell Proliferation , Guanosine/metabolism , HEK293 Cells , Humans , Methylation , Methyltransferases/metabolism , MicroRNAs/metabolism , Nucleic Acid Conformation
9.
Nat Commun ; 9(1): 5378, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568163

ABSTRACT

We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins , Cell Differentiation , Chromatin/metabolism , Epigenesis, Genetic , HL-60 Cells , Hematopoiesis , Humans , K562 Cells , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , RNA Splicing
10.
Nature ; 552(7683): 126-131, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29186125

ABSTRACT

N6-methyladenosine (m6A) is an abundant internal RNA modification in both coding and non-coding RNAs that is catalysed by the METTL3-METTL14 methyltransferase complex. However, the specific role of these enzymes in cancer is still largely unknown. Here we define a pathway that is specific for METTL3 and is implicated in the maintenance of a leukaemic state. We identify METTL3 as an essential gene for growth of acute myeloid leukaemia cells in two distinct genetic screens. Downregulation of METTL3 results in cell cycle arrest, differentiation of leukaemic cells and failure to establish leukaemia in immunodeficient mice. We show that METTL3, independently of METTL14, associates with chromatin and localizes to the transcriptional start sites of active genes. The vast majority of these genes have the CAATT-box binding protein CEBPZ present at the transcriptional start site, and this is required for recruitment of METTL3 to chromatin. Promoter-bound METTL3 induces m6A modification within the coding region of the associated mRNA transcript, and enhances its translation by relieving ribosome stalling. We show that genes regulated by METTL3 in this way are necessary for acute myeloid leukaemia. Together, these data define METTL3 as a regulator of a chromatin-based pathway that is necessary for maintenance of the leukaemic state and identify this enzyme as a potential therapeutic target for acute myeloid leukaemia.


Subject(s)
Adenosine/analogs & derivatives , Gene Expression Regulation, Neoplastic/genetics , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Methyltransferases/metabolism , Promoter Regions, Genetic/genetics , Protein Biosynthesis , Adenosine/genetics , Adenosine/metabolism , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin/genetics , Chromatin/metabolism , Female , Genes, Neoplasm/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Methyltransferases/chemistry , Methyltransferases/deficiency , Methyltransferases/genetics , Mice , Protein Biosynthesis/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Transcription Initiation Site
11.
Cell Death Differ ; 24(10): 1750-1760, 2017 10.
Article in English | MEDLINE | ID: mdl-28644441

ABSTRACT

Transforming growth factor (TGF)-ß is one of the major inducers of epithelial to mesenchymal transition (EMT), a crucial program that has a critical role in promoting carcinoma's metastasis formation. MicroRNAs-143 and -145, which are both TGF-ß direct transcriptional targets, are essential for the differentiation of vascular smooth muscle cells (VSMC) during embryogenesis, a TGF-ß-dependent process reminiscent of EMT. Their role in adult tissues is however less well defined and even ambiguous, as their expression was correlated both positively and negatively with tumor progression. Here we show that high expression of both miRs-143 and -145 in mouse mammary tumor cells expressing constitutively active STAT3 (S3C) is involved in mediating their disrupted cell-cell junctions. Additionally, miR-143 appears to have a unique role in tumorigenesis by enhancing cell migration in vitro and extravasation in vivo while impairing anchorage-independent growth, which may explain the contradictory reports about its role in tumors. Accordingly, we demonstrate that overexpression of either miRNA in the non-transformed mammary epithelial NMuMG cells leads to upregulation of EMT markers and of several endogenous TGF-ß targets, downmodulation of a number of junction proteins and increased motility, correlating with enhanced basal and TGF-ß-induced SMAD-mediated transcription. Moreover, pervasive transcriptome perturbation consistent with the described phenotype was observed. In particular, the expression of several transcription factors involved in the mitogenic responses, of MAPK family members and, importantly, of several tight junction proteins and the SMAD co-repressor TGIF was significantly reduced. Our results provide important mechanistic insight into the non-redundant role of miRs-143 and -145 in EMT-related processes in both transformed and non-transformed cells, and suggest that their expression must be finely coordinated to warrant optimal migration/invasion while not interfering with cell growth.


Subject(s)
Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Co-Repressor Proteins/metabolism , Epithelial Cells/metabolism , Female , Mice , Mice, Transgenic , Neoplasm Invasiveness/genetics , Transforming Growth Factor beta/metabolism
12.
Mol Cell ; 53(5): 806-18, 2014 03 06.
Article in English | MEDLINE | ID: mdl-24582497

ABSTRACT

Amplification of the EMSY gene in sporadic breast and ovarian cancers is a poor prognostic indicator. Although EMSY has been linked to transcriptional silencing, its mechanism of action is unknown. Here, we report that EMSY acts as an oncogene, causing the transformation of cells in vitro and potentiating tumor formation and metastatic features in vivo. We identify an inverse correlation between EMSY amplification and miR-31 expression, an antimetastatic microRNA, in the METABRIC cohort of human breast samples. Re-expression of miR-31 profoundly reduced cell migration, invasion, and colony-formation abilities of cells overexpressing EMSY or haboring EMSY amplification. We show that EMSY is recruited to the miR-31 promoter by the DNA binding factor ETS-1, and it represses miR-31 transcription by delivering the H3K4me3 demethylase JARID1b/PLU-1/KDM5B. Altogether, these results suggest a pathway underlying the role of EMSY in breast cancer and uncover potential diagnostic and therapeutic targets in sporadic breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/physiology , Neoplasm Proteins/physiology , Nuclear Proteins/physiology , Repressor Proteins/physiology , Animals , Base Sequence , Cell Movement , Cohort Studies , Female , Gene Silencing , Humans , MCF-7 Cells , Mice , Mice, Nude , MicroRNAs/genetics , Molecular Sequence Data , NIH 3T3 Cells , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Oncogenes/genetics , RNA, Small Interfering/metabolism , Repressor Proteins/metabolism
14.
Brief Funct Genomics ; 12(3): 219-30, 2013 May.
Article in English | MEDLINE | ID: mdl-23543289

ABSTRACT

The malleability of the epigenome has long been recognized as a unique opportunity for therapeutic intervention. Interest in targeting components of the epigenetic machinery for therapeutic gain had initially been aimed at chromatin modifying enzymes. However, advances in medicinal chemistry have now made it possible to exploit protein-protein interactions at the chromatin interface. Bromodomains (BRD) are a conserved motif used by a large number of chromatin-associated proteins to recognize and bind acetylated histone tails. Small molecules with high specificity for the Bromodomain and Extra Terminal family of proteins (BRD2, BRD3, BRD4 and BRDT) have recently been shown to have remarkable pre-clinical efficacy in various malignancies. These findings have provided the impetus for exploring other BRD proteins as novel targets in cancer therapy.


Subject(s)
Neoplasms/metabolism , Nuclear Proteins/chemistry , Transcription Factors/chemistry , Cell Cycle Proteins , Epigenomics , Humans , Neoplasms/genetics , Nuclear Proteins/genetics , Protein Structure, Tertiary , Transcription Factors/genetics
15.
Horm Mol Biol Clin Investig ; 10(1): 217-25, 2012 Jun.
Article in English | MEDLINE | ID: mdl-25436678

ABSTRACT

UNLABELLED: Abstract Background: The pro-oncogenic transcription factor STAT3 is constitutively active in tumours of many different origins, which often become addicted to its activity. STAT3 is believed to contribute to the initial survival of pre-cancerous cells as well as to hyper-proliferation and, later, metastasis. MATERIALS AND METHODS: To evaluate the contribution of enhanced STAT3 activation in a controlled model system, we generated knock-in mice in which a mutant constitutively active Stat3C allele replaces the endogenous wild-type allele and analysed its contribution to breast tumorigenesis. Moreover, we generated Stat3C/C MEF cells and analysed their gene expression and metabolic profiles. RESULTS: Constitutively active STAT3 could enhance the tumorigenic power of the rat Neu oncogene in MMTV-Neu transgenic mice and trigger the production of earlier onset and more invasive mammary tumours. Tumour-derived cell lines displayed higher migrating, invading and metastatic ability and showed disrupted distribution of cell-cell junction markers. These features were mediated by STAT3-dependent over-expression of the C-terminal tensin-like (Cten) focal adhesion protein. Moreover, STAT3C alone was able to induce aerobic glycolysis and down-regulate mitochondrial activity, both in primary fibroblasts and in STAT3-dependent tumour cell lines, acting via both HIF-1α-dependent and independent mechanisms. CONCLUSIONS: STAT3 can induce a metabolic switch that predisposes cells to aberrant survival, enhanced proliferation and, finally, tumour transformation. Later, enhanced Cten expression contributes to tissue infiltration and metastasis. While not excluding the contribution of many other tumour-specific STAT3 target genes, our data provide a unifying explanation of several pro-oncogenic STAT3 activities.

16.
Cancer Res ; 70(6): 2558-67, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20215508

ABSTRACT

The transcription factor signal transducer and activator of transcription 3 (STAT3) is constitutively activated in tumors of different origin, but the molecular bases for STAT3 requirement are only partly understood. To evaluate the contribution of enhanced Stat3 activation in a controlled model system, we generated knock-in mice wherein a mutant constitutively active Stat3C allele replaces the endogenous wild-type allele. Stat3C could enhance the tumorigenic power of the rat Neu oncogene in mouse mammary tumor virus (MMTV)-Neu transgenic mice, triggering the production of earlier onset, more invasive mammary tumors. Tumor-derived cell lines displayed higher migration, invasion, and metastatic ability and showed disrupted distribution of cell-cell junction markers mediated by Stat3-dependent overexpression of the COOH terminal tensin-like (Cten) focal adhesion protein, which was also significantly upregulated in Stat3C mammary tumors. Importantly, the proinflammatory cytokine interleukin-6 could mediate Cten induction in MCF10 cells in an exquisitely Stat3-dependent way, showing that Cten upregulation is a feature of inflammation-activated Stat3. In light of the emerging pivotal role of Stat3 in connecting inflammation and cancer, our identification of Cten as a Stat3-dependent mediator of migration provides important new insights into the oncogenic role of Stat3, particularly in the breast.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement/physiology , Mammary Neoplasms, Experimental/metabolism , Microfilament Proteins/metabolism , Receptor, ErbB-2/metabolism , STAT3 Transcription Factor/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Female , Humans , Lung Neoplasms/secondary , Male , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Phosphorylation , Receptor, ErbB-2/genetics , STAT3 Transcription Factor/biosynthesis , STAT3 Transcription Factor/genetics , Tensins , Transcription, Genetic , Up-Regulation
17.
Mol Carcinog ; 49(2): 114-20, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20027636

ABSTRACT

The oncogenic transcription factor Stat3 is constitutively active in a high percentage of human tumors including mammary adenocarcinomas and is reported to participate in the ErbB-2 oncogene signaling. In order to assess the role of signal transducer and activator of transcription 3 (Stat3) in mammary tumorigenesis downstream of ErbB-2, we generated mice expressing the activated rat ErbB-2 (neu) but lacking Stat3 in the mammary epithelium. Stat3 is apparently not required for neu-driven mammary tumorigenesis as tumors developed similarly in both Stat3-sufficient and Stat3-deficient glands. However, short hairpin RNA (shRNA)-mediated Stat3 silencing in a neu-overexpressing tumor-derived cell line completely abolished both neu-driven anchorage-independent growth and lung metastasis. Our data suggest that Stat3 might be a useful therapeutic target in breast tumors showing amplification and/or overexpression of the ErbB-2 oncogene, which normally display aggressive, metastatic behavior.


Subject(s)
Cell Adhesion/physiology , Cell Division/physiology , Genes, erbB-2 , Mammary Neoplasms, Experimental/physiopathology , Neoplasm Metastasis/physiopathology , STAT3 Transcription Factor/physiology , Animals , Base Sequence , Cell Line, Tumor , DNA Primers , Female , Gene Silencing , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , STAT3 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...