Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 9(97): eadl1903, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028828

ABSTRACT

Regulatory T cells (Tregs) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident Tregs and group 2 innate lymphoid cells (ILC2s); however, how Tregs locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of Treg function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and Tregs engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3high Tregs, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-Treg communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3high Tregs can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-Treg interactions represent a critical feedback mechanism to control adaptive type 2 immunity.


Subject(s)
Adaptive Immunity , GATA3 Transcription Factor , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Mice , Adaptive Immunity/immunology , Lymphocytes/immunology , Immunity, Innate/immunology , Mice, Knockout , Th2 Cells/immunology , Female
3.
Genet Sel Evol ; 50(1): 60, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30445909

ABSTRACT

BACKGROUND: Bacterial cold-water disease, which is caused by Flavobacterium psychrophilum, is one of the major diseases that affect rainbow trout (Oncorhynchus mykiss) and a primary concern for trout farming. Better knowledge of the genetic basis of resistance to F. psychrophilum would help to implement this trait in selection schemes and to investigate the immune mechanisms associated with resistance. Various studies have revealed that skin and mucus may contribute to response to infection. However, previous quantitative trait loci (QTL) studies were conducted by using injection as the route of infection. Immersion challenge, which is assumed to mimic natural infection by F. psychrophilum more closely, may reveal different defence mechanisms. RESULTS: Two isogenic lines of rainbow trout with contrasting susceptibilities to F. psychrophilum were crossed to produce doubled haploid F2 progeny. Fish were infected with F. psychrophilum either by intramuscular injection (115 individuals) or by immersion (195 individuals), and genotyped for 9654 markers using RAD-sequencing. Fifteen QTL associated with resistance traits were detected and only three QTL were common between the injection and immersion. Using a model that accounted for epistatic interactions between QTL, two main types of interactions were revealed. A "compensation-like" effect was detected between several pairs of QTL for the two modes of infection. An "enhancing-like" interaction effect was detected between four pairs of QTL. Integration of the QTL results with results of a previous transcriptomic analysis of response to F. psychrophilum infection resulted in a list of potential candidate immune genes that belong to four relevant functional categories (bacterial sensors, effectors of antibacterial immunity, inflammatory factors and interferon-stimulated genes). CONCLUSIONS: These results provide new insights into the genetic determinism of rainbow trout resistance to F. psychrophilum and confirm that some QTL with large effects are involved in this trait. For the first time, the role of epistatic interactions between resistance-associated QTL was evidenced. We found that the infection protocol used had an effect on the modulation of defence mechanisms and also identified relevant immune functional candidate genes.


Subject(s)
Fish Diseases/genetics , Fish Diseases/immunology , Flavobacteriaceae Infections/veterinary , Flavobacterium/physiology , Oncorhynchus mykiss , Quantitative Trait Loci , Animals , Disease Resistance , Female , Fish Diseases/microbiology , Flavobacteriaceae Infections/genetics , Flavobacteriaceae Infections/immunology , Genotype , Male , Phenotype , Polymorphism, Single Nucleotide
4.
Genet Sel Evol ; 49(1): 77, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29065859

ABSTRACT

BACKGROUND: Copy number variations (CNV) are known to play a major role in genetic variability and disease pathogenesis in several species including cattle. In this study, we report the identification and characterization of CNV in eight French beef and dairy breeds using whole-genome sequence data from 200 animals. Bioinformatics analyses to search for CNV were carried out using four different but complementary tools and we validated a subset of the CNV by both in silico and experimental approaches. RESULTS: We report the identification and localization of 4178 putative deletion-only, duplication-only and CNV regions, which cover 6% of the bovine autosomal genome; they were validated by two in silico approaches and/or experimentally validated using array-based comparative genomic hybridization and single nucleotide polymorphism genotyping arrays. The size of these variants ranged from 334 bp to 7.7 Mb, with an average size of ~ 54 kb. Of these 4178 variants, 3940 were deletions, 67 were duplications and 171 corresponded to both deletions and duplications, which were defined as potential CNV regions. Gene content analysis revealed that, among these variants, 1100 deletions and duplications encompassed 1803 known genes, which affect a wide spectrum of molecular functions, and 1095 overlapped with known QTL regions. CONCLUSIONS: Our study is a large-scale survey of CNV in eight French dairy and beef breeds. These CNV will be useful to study the link between genetic variability and economically important traits, and to improve our knowledge on the genomic architecture of cattle.


Subject(s)
Cattle/genetics , DNA Copy Number Variations , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods , Animals , Dairy Products/standards , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Red Meat/standards
5.
Nat Genet ; 49(3): 470-475, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28135247

ABSTRACT

The yak is remarkable for its adaptation to high altitude and occupies a central place in the economies of the mountainous regions of Asia. At lower elevations, it is common to hybridize yaks with cattle to combine the yak's hardiness with the productivity of cattle. Hybrid males are sterile, however, preventing the establishment of stable hybrid populations, but not a limited introgression after backcrossing several generations of female hybrids to male yaks. Here we inferred bovine haplotypes in the genomes of 76 Mongolian yaks using high-density SNP genotyping and whole-genome sequencing. These yaks inherited ∼1.3% of their genome from bovine ancestors after nearly continuous admixture over at least the last 1,500 years. The introgressed regions are enriched in genes involved in nervous system development and function, and particularly in glutamate metabolism and neurotransmission. We also identified a novel mutation associated with a polled (hornless) phenotype originating from Mongolian Turano cattle. Our results suggest that introgressive hybridization contributed to the improvement of yak management and breeding.


Subject(s)
Genome/genetics , Hybridization, Genetic/genetics , Animals , Breeding/methods , Cattle , Female , Genome-Wide Association Study/methods , Genotype , Male , Phenotype , Polymorphism, Single Nucleotide/genetics
6.
PLoS One ; 10(8): e0135931, 2015.
Article in English | MEDLINE | ID: mdl-26317361

ABSTRACT

High-throughput sequencing technologies have offered in recent years new opportunities to study genome variations. These studies have mostly focused on single nucleotide polymorphisms, small insertions or deletions and on copy number variants. Other structural variants, such as large insertions or deletions, tandem duplications, translocations, and inversions are less well-studied, despite that some have an important impact on phenotypes. In the present study, we performed a large-scale survey of structural variants in cattle. We report the identification of 6,426 putative structural variants in cattle extracted from whole-genome sequence data of 62 bulls representing the three major French dairy breeds. These genomic variants affect DNA segments greater than 50 base pairs and correspond to deletions, inversions and tandem duplications. Out of these, we identified a total of 547 deletions and 410 tandem duplications which could potentially code for CNVs. Experimental validation was carried out on 331 structural variants using a novel high-throughput genotyping method. Out of these, 255 structural variants (77%) generated good quality genotypes and 191 (75%) of them were validated. Gene content analyses in structural variant regions revealed 941 large deletions removing completely one or several genes, including 10 single-copy genes. In addition, some of the structural variants are located within quantitative trait loci for dairy traits. This study is a pan-genome assessment of genomic variations in cattle and may provide a new glimpse into the bovine genome architecture. Our results may also help to study the effects of structural variants on gene expression and consequently their effect on certain phenotypes of interest.


Subject(s)
Cattle/genetics , Genomic Structural Variation , Animals , Animals, Inbred Strains , Dairying , Genome-Wide Association Study , Genotype , Quantitative Trait Loci
7.
Genet Sel Evol ; 47: 37, 2015 May 03.
Article in English | MEDLINE | ID: mdl-25935160

ABSTRACT

BACKGROUND: Since 2010, four Charolais calves with a congenital mechanobullous skin disorder that were born in the same herd from consanguineous matings were reported to us. Clinical and histopathological examination revealed lesions that are compatible with junctional epidermolysis bullosa (JEB). RESULTS: Fifty-four extended regions of homozygosity (>1 Mb) were identified after analysing the whole-genome sequencing (WGS) data from the only case available for DNA sampling at the beginning of the study. Filtering of variants located in these regions for (i) homozygous polymorphisms observed in the WGS data from eight healthy Charolais animals and (ii) homozygous or heterozygous polymorphisms found in the genomes of 234 animals from different breeds did not reveal any deleterious candidate SNPs (single nucleotide polymorphisms) or small indels. Subsequent screening for structural variants in candidate genes located in the same regions identified a homozygous deletion that includes exons 17 to 23 of the integrin beta 4 (ITGB4), a gene that was previously associated with the same defect in humans. Genotyping of a second case and of six parents of affected calves (two sires and four dams) revealed a perfect association between this mutation and the assumed genotypes of the individuals. Mining of Illumina BovineSNP50 Beadchip genotyping data from 6870 Charolais cattle detected only 44 heterozygous animals for a 5.6-Mb haplotype around ITGB4 that was shared with the carriers of the mutation. Interestingly, none of the 16 animals genotyped for the deletion carried the mutation, which suggests a rather recent origin for the mutation. CONCLUSIONS: In conclusion, we successfully identified the causative mutation for a very rare autosomal recessive mutation with only one case by exploiting the most recent DNA sequencing technologies.


Subject(s)
Cattle Diseases/genetics , Epidermolysis Bullosa, Junctional/veterinary , Integrin beta4/genetics , Sequence Deletion , Animals , Cattle , Cattle Diseases/pathology , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Exons , Female , Genome , Homozygote , Male , Sequence Analysis, DNA
8.
J Clin Microbiol ; 50(9): 2881-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22718944

ABSTRACT

Adaptation of avian influenza viruses (AIVs) from waterfowl to domestic poultry with a deletion in the neuraminidase (NA) stalk has already been reported. The way the virus undergoes this evolution, however, is thus far unclear. We address this question using pyrosequencing of duck and turkey low-pathogenicity AIVs. Ducks and turkeys were sampled at the very beginning of an H6N1 outbreak, and turkeys were swabbed again 8 days later. NA stalk deletions were evidenced in turkeys by Sanger sequencing. To further investigate viral evolution, 454 pyrosequencing was performed: for each set of samples, up to 41,500 reads of ca. 400 bp were generated and aligned. Genetic polymorphisms between duck and turkey viruses were tracked on the whole genome. NA deletion was detected in less than 2% of reads in duck feces but in 100% of reads in turkey tracheal specimens collected at the same time. Further variations in length were observed in NA from turkeys 8 days later. Similarly, minority mutants emerged on the hemagglutinin (HA) gene, with substitutions mostly in the receptor binding site on the globular head. These critical changes suggest a strong evolutionary pressure in turkeys. The increasing performances of next-generation sequencing technologies should enable us to monitor the genomic diversity of avian influenza viruses and early emergence of potentially pathogenic variants within bird flocks. The present study, based on 454 pyrosequencing, suggests that NA deletion, an example of AIV adaptation from waterfowl to domestic poultry, occurs by selection rather than de novo emergence of viral mutants.


Subject(s)
Disease Outbreaks , Evolution, Molecular , Genome, Viral , Influenza in Birds/genetics , Influenza in Birds/virology , Neuraminidase/genetics , Viral Proteins/genetics , Amino Acid Substitution , Animals , Ducks , Hemagglutinins, Viral/genetics , Influenza in Birds/epidemiology , Molecular Sequence Data , Mutation, Missense , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Deletion , Turkeys , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...