Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(29): 42251-42263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865049

ABSTRACT

Geopolymers are amorphous aluminosilicate inorganic polymers synthesized by alkaline activation characterized by a lower carbon footprint, greater durability, and excellent mechanical properties compared to traditional concrete, making them promising building materials for sustainable construction. To develop sustainable lightweight geopolymer-based building materials useful as fire resistant thermal insulation materials, we added 5 and 10 wt% of discarded cork dust, a readily available industrial by-product, to metakaolin before and after the alkaline activation with sodium hydroxide 8 M and sodium silicate solutions. We followed the chemical, microstructural, antibacterial, and physical properties of the resulting composites for up to 90 days in order to monitor their long-term durability. The presence of cork does not interfere with the geopolymerization process and in fact reduces the density of the composites to values around 2.5 g/cm3, especially when added after alkaline activation. The composites resulted in chemically stable matrices (less than 10 ppm of cations release) and filler (no hazardous compounds released) with a bacterial viability of around 80%. This study provides valuable insights into the tailoring of discarded cork-based composites obtained by geopolymerization with a porosity between 32 and 48% and a mechanical resistance to compression from 15 to 5 MPa, respectively, suggesting their potential as durable interior panels with low environmental impact and desirable performance.


Subject(s)
Construction Materials , Quercus/chemistry , Polymers/chemistry
2.
Materials (Basel) ; 16(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37176290

ABSTRACT

This work started as a joint academia and company research project with the aim of finding new applications for domestically sourced volcanic products and related waste (pumice, lapillus, zeolitic tuff and volcanic debris from Tessennano and Arlena quarry) by creating a database of secondary volcanic raw materials and their intrinsic characteristics to help industry replace virgin materials and enhance circularity. In this context, accurate chemical, mineralogical, morphological, granulometric and thermal characterizations were performed. Based on the results presented, it can be concluded that due to their lightness, these materials can be used in the design and preparation of lightweight aggregates for agronomic purposes or in the construction field. Furthermore, due to their aluminosilicate nature and amorphous fraction, pumice and lapillus can play the role of precursor or activator for geopolymer preparation. With its porous nature, zeolitic tuff can be exploited for flue gas treatment. Due to the presence of feldspathic phase (sanidine), these materials can be used in tile production as a fluxing component, and with their pozzolanic activity and calcium content, they have application in the binder field as supplementary cementitious material or as aggregates.

3.
Sci Rep ; 12(1): 20505, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443376

ABSTRACT

In the present work, a statistical optimization of a sustainable coating for core-shell NPK (Nitrogen-Phosphorus-Potassium) fertilizers was investigated. The environmental green coating was enriched in nitrogen using a biomass and renewable source, namely the nitrogen rich fraction of black soldier fly larvae (BSFL) (Hermetia Illucens, Diptera: Stratiomyidae) reared on vegetable waste. A rational approach was proposed with the aim of calculating the best formulation of the coating, considering both its manufacturing behavior, such as adhesion to the core, and its physical properties, such as homogeneity or plasticity. From a circular economy perspective, together with the nitrogen-rich fraction from BSFL (from 51 to 90 wt.%), water and glycerol were considered for the coating formulation in different proportion: from 10 to 32 wt.% and from 0 to 17 wt.% respectively. The Design of Experiments technique was implemented to limit the total number of tests for the coating formulation (18 tests). ANOVA was employed, with the aim of obtaining mathematical models to derive a better precise and objective formulation. The results show that the use of glycerol can be avoided, as well as only a limited amount of water (11 wt.%) is necessary to obtain an optimized coating formulation, thereafter, satisfying the more relevant technological and physical properties for the coating manufacturing.


Subject(s)
Diptera , Fertilizers , Animals , Larva , Nitrogen , Glycerol , Water
4.
Polymers (Basel) ; 14(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683848

ABSTRACT

Recycling corundum abrasive powder in metakaolin-based geopolymer formulations is proposed to reduce the amount of waste to be treated or disposed of in landfills, allowing to decrease ecological damage as well as to reduce transport costs for removal. The addition of waste corundum, as an important source of Al2O3, has proved to increase the slight ionic conductivity of the leachate solution obtained after immersion in water of samples at 28 d of curing at room temperature. With the same curing conditions, the geopolymerization process has not been disturbed as evidenced by the FT-IR peak shift and XRD patterns. It was recorded a decrease in resistance to compression of the consolidated geopolymers of about 5% with 10 wt% addition and of about 77% with the addition of 20 wt% of waste corundum. In any case, the waste abrasive powder does not release heavy metals when added to a geopolymeric formulation based on MK, NaOH, and Na-silicate, and does not show relevant antibacterial properties, indicating the formation of a stable and safe final product with a ceramic-like appearance.

5.
ACS Omega ; 5(42): 27154-27163, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33134675

ABSTRACT

In this study, an organic nitrogen-based coating was developed based on black soldier fly (BSF) prepupae reared on poultry dejections and deposited on ceramic lightweight aggregates (LWAs), containing phosphorous (P) and potassium (K) from agroresidues, leading to a complete nitrogen, phosphorus, and potassium (NPK) fertilizer. To obtain a resistant coating with good adhesion to LWAs, different plasticizing agents were tested (e.g., glycerol, cellulose, and polyethylene glycol). The coating formulation was optimized through a design-of-experiment (DoE) approach to correlate the effect of each mixture component on the coating's performance. BSF biomass was characterized through chemical and thermal routes, as well as the final coated LWAs, confirming their general agreement to fertilizer's requirements. Release tests in static conditions highlighted the barrier action of the coating, preventing uncontrolled release of potassium and phosphorus contained in the LWAs as well as the release of nitrogen after 21 days (near to 20%). Germination and growth tests indicated a valuable increase of the growth index, whereas the germination process is limited by the coating barrier effect. This work proposes a new product in the field of slow-release fertilizers designed by rational methodologies and innovative materials based on waste valorization, fully in agreement with a circular economy perspective.

6.
Materials (Basel) ; 14(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396474

ABSTRACT

This study proposes different manufacturing techniques (manual pelletization, powder pressing, and "shell scaffold") to obtain lightweight clay ceramics containing recovery raw materials. The sintering in an electrical furnace (1000 °C, 1 h processing time) was conducted by traditional firing from room temperature, for pressed and shell-scaffold samples, while the flash heating (i.e., samples directly put at 1000 °C) was used only for the pellets. The porous materials (porosity 40-80%), functionalized with nutrients (K and P) in amounts to confer the fertilizer capability, gave suitable results in terms of pH (6.7-8.15) and electrical conductivity (0.29-1.33 mS/cm). Thus, such materials can be considered as feasible lightweight clay ceramics, with a positive effect on the soil. These findings permit us to hypothesize a potential use in green roofs or in agronomic applications.

7.
Materials (Basel) ; 12(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683570

ABSTRACT

This paper presents an innovative application for spent coffee grounds (SCGs) used as filler for the formulation of lightweight clay ceramic aggregates (LWA). LWA can be used for urban and agricultural purposes as a sustainable solution. Spent coffee grounds were tested as a pore forming agent partially acting as a replacement for red clay in material formulation before firing. Substitutions of 10, 15, and 20 wt.% of red clay were tested. The properties of lightweight aggregates with 15 wt.% of SCGs were improved using a specifically tailored fertilizer glass due to its low pH and conductivity within the soil tolerance range. Packaging glassy sand, cattle-bone flour ash, and potassium carbonate were mixed and melted in order to obtain this glass, which when added to the clayey batch functionalized the aggregates by phosphorus and potassium nutrients. The results (in particular, porosity and bulk density) show that the lightweight aggregates obtained have interesting properties for possible uses both in urban (e.g., green roofs as a drainage layer) and agricultural purposes. Moreover, pH and conductivity are in line with the Italian Standard regarding soil amendment (D.lgs. 75/2010). In addition, several leaching tests were performed in a solution containing 2 vol.% citric acid (C6H8O7) to evaluate the release capacity not only of nutrients (P and K) but also to check the presence and release of heavy metals, such as lead (Pb), that may come from the glassy precursor. The results obtained showed that nutrients are efficiently released in 21 days (P = 87.73% and K = 25.74% of released percentage) and Pb release is under the standard threshold of 30 ppm.

8.
Waste Manag ; 98: 50-57, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31430700

ABSTRACT

In Italy, the production of bottom ash from waste incineration was estimated as 1.6 million tons/year, corresponding to 30% of the total input waste. The bottom ash is mainly formed by SiO2, Al2O3, CaO, Na2O and low amount of heavy metals, therefore it cannot be considered a 'non-hazardous' waste. In this context, the aim of this work was to determine the effectiveness of the sintering and vitrification techniques to turn bottom ash into an inert ceramic or glass matrix using toxicological tests. The bottom ash from a municipal solid waste facility was ground and used in ceramic tile and glass compositions. After sintering of the ceramic tiles and melting of the glass compositions, the samples were characterized by leachability and toxicological analyzes. Living organisms were used in the toxicological tests, Escherichia coli and Staphylococcus aureus (Agar Diffusion Test), Artemia sp. (Acute Toxicity Test) and Lactuca sativa (germination) and the results were compared with the plasmid DNA test. Regarding the leachability results, the ceramic tile samples showed a concentration of Cu slightly above the limit determined by the D.M. 5/4/2006 directive and, therefore, could not be considered an inert material. Regarding the toxicological tests, the bottom ash alone is mutagenic, but this effect is avoided once the ash is immobilized into the glasses and ceramic tiles, as demonstrated by the results reported in this study.


Subject(s)
Coal Ash , Metals, Heavy , Ceramics , Construction Materials , Incineration , Italy , Silicon Dioxide
9.
Waste Manag Res ; 35(9): 958-966, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28681661

ABSTRACT

This article investigates the effect of a low-impact chemical treatment based on a nitrilotriacetic acid chelating agent on the reactivity of funnel glass derived from discarded cathode ray tubes. Treated and untreated glass has been recycled either as a supplementary cementing material or as a fine aggregate in cementitious mortars. The effect of the treatment on the chemical and morphological properties of cullets, as well as on the solubility in an alkaline environment has been evaluated. Data so far collected underline a change in glass cullets characteristics that consequently affects their behaviour in cementitious mortars, reducing the pozzolanic activity as supplementary cementing material, but strongly decreasing the tendency towards alkali silica reactions when added as a fine aggregate. The leaching behaviour of lead on treated and untreated glass and on derived composites has been determined to verify the sustainability of the prepared materials.


Subject(s)
Glass , Recycling , Cathode Ray Tube , Lead , Silicon Dioxide , Solubility
10.
J Hazard Mater ; 286: 474-83, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25615695

ABSTRACT

A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days.


Subject(s)
Aluminum Silicates/chemistry , Chromium/chemistry , Waste Disposal, Fluid/methods , Industrial Waste , Magnetic Resonance Spectroscopy
11.
Environ Sci Pollut Res Int ; 21(23): 13230-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24078272

ABSTRACT

The cathode ray tube (CRT) glass is one of the most important problem that afflicts the electronic waste disposal whose solution lies in the identification of efficient and ecofriendly processes to detoxify and reutilize lead-contained funnel glass. This study is focused on a rapid screening of different chemical and mechanochemical processes to reduce lead content in waste CRT glass downgrading the risk correlated to it. In particular, as a possibility to clean waste CRT glass, treatments of lead-containing glass with different chelating agents (EDTA, NTA, ATMP, EDTMP and HEDP) were performed to evaluate their extractive capabilities. Furthermore, the influence of the grinding, the chelating agent functional groups (polyamino-carboxylic acid, carboxylic acid, and polyamino phosphonic acid), and the time and the temperature on lead content reduction were analyzed. ESEM and EDS analysis were performed on all the samples to evaluate the lead amount before and after the treatments.


Subject(s)
Cathode Ray Tube , Chelating Agents/chemistry , Electronic Waste/analysis , Glass/chemistry , Lead/analysis , Refuse Disposal/methods , Electronics , Italy , Solutions , Temperature
12.
Waste Manag ; 33(8): 1740-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23756039

ABSTRACT

Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered.


Subject(s)
Alkalies/chemistry , Coal Ash , Incineration/methods , Coal Ash/analysis , Coal Ash/chemistry , Hydrogen-Ion Concentration , Polymerization , Recycling , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
13.
Waste Manag ; 33(11): 2307-15, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23602302

ABSTRACT

In this work the feasibility of using woody agricultural biomass wastes as grapes and cherries seeds, sawdust, as pore forming agent, and sugar cane ash, as silica precursor, in bricks, were reported. Sawdust and grapes and cherries seeds, thanks to their organic substances content, during their combustion, bring an energetic support in the bricks firing phase and act as pore forming agent. Usually the addition of this kind of waste is limited to 10wt.% in order to reach an equilibrium between positive (weight and shrinkage decrease and porosity increase) and negative (increase of water absorption and mechanical resistance decrease) effects. The results show that grapes and cherries seeds, added in a percentage of 5wt.% to a brick formulation, have better influence with respect to the sawdust, maintaining the mechanical properties of the fired brick (950°C), showing modulus of rupture around 21-23MPa with a weight reduction of 3-10% (respect to the standard one). Regarding the sugar cane ash, the addition of 5wt.% improves the mechanical properties (modulus of rupture around 27MPa) and no weight decrease is observed. These results confirmed the role played by this kind of agricultural waste, which thanks to its high silica content (61wt.%) is capable to demonstrate a filler and plasticity reducing effect on the brick bodies. Tests carried out highlighted that the addition of these by-products (5wt.%) do not change negatively the main technological properties measured (water absorption, linear shrinkage, flexural resistance, etc.) and permit to hypothesize their use to obtain bricks with both insulating and higher mechanical properties using a pore agent forming or silica carrier alternative raw materials, respectively.


Subject(s)
Biomass , Construction Materials/analysis , Crops, Agricultural/chemistry , Waste Products/analysis , Aluminum Silicates/chemistry , Clay , Feasibility Studies , Waste Management , Wood/chemistry
14.
Waste Manag ; 30(4): 673-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19879748

ABSTRACT

Municipal solid waste incinerators every year produce tons of fly ashes which, differently from coal fly ashes, contain large amounts of toxic substances (heavy metals, dioxins, furans). The stabilization/solidification (S/S) technology known as geopolymerization is proposed with the purpose to bond physically and chemically incinerator fly ashes (IFA) in a solid matrix, in order to reduce pollutant mobility. The chemical stability of geopolymers with Si/Al ratio of 1.8-1.9 and Na/Al ratio of 1.0, synthesized by alkali activation of metakaolin and the addition of 20wt% of two different kinds of IFA, is presented. The concentration of the alkaline solution, water to solid ratio and curing process have been optimized. The room temperature consolidation of IFA containing geopolymers has been tested for leachability in water for 1day, accordingly to EN 12457 regulation and extended to 7days to increase the water attack on solid granules. Leachable metals in the test solution, determined by ICP_AES, fall within limit values set by regulation for non-dangerous waste landfill disposal. Geopolymeric matrix evolution with leaching time has been also evaluated in terms of pH and electrical conductivity increase in solution.


Subject(s)
Carbon/chemistry , Incineration , Particulate Matter/chemistry , Polymers/chemistry , Refuse Disposal , Aluminum/chemistry , Cities , Coal Ash , Electric Conductivity , Hydrogen-Ion Concentration , Kaolin , Metals, Heavy/chemistry , Polymers/chemical synthesis , Silicon Dioxide/chemistry , Sodium/chemistry , Solubility , Solutions/chemistry , Spectrophotometry, Atomic , Temperature
15.
Waste Manag Res ; 23(4): 314-21, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16200981

ABSTRACT

In this study the use of 'cleaned' end of life (EOL) cathode ray tube (CRT) glass as a raw material in ceramic glazes is described. At present, the recycling and industrial utilization of CRT, a glass material from TV and computer sets, is a subject of intense research with particular regard to the so-called open-loop recycling, namely cycles different from that of the origin. However, the use of CRT glass as a secondary raw material is strictly related to the demand of high-quality raw material. The good preliminary results reached by introducing clean TV and PC monitor panel and cone glass into ceramic glaze formulations pushed research toward the setting-up of a base glaze that is exploitable for the production of pigmented, silk-screened and flame-hardened glazes (products used industrially for coating floor tiles). The aesthetic and chemical characterization of the tiles glazed by this product showed an extremely similar behaviour to originals that did not contain CRT glass. The good technical results achieved have been supported by the life cycle assessment analysis, which has demonstrated a reduction of the environmental impact of the CRT glass-containing ceramic glaze with respect to the standard one.


Subject(s)
Ceramics , Conservation of Natural Resources , Glass , Refuse Disposal , Beta Particles , Computer Terminals , Italy , Technology , Television
SELECTION OF CITATIONS
SEARCH DETAIL
...