Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 93(8): 081101, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050050

ABSTRACT

Giant negative ion sources for neutral beam injectors deliver huge negative ion currents, thanks to their multi-beamlet configuration. As the single-beamlet optics defines the transmission losses along the beamline, the extraction of a similar current for all beamlets is extremely desirable, in order to facilitate the beam source operation (i.e., around perveance match). This Review investigates the correlation between the vertical profile of beam intensity and the vertical profiles of plasma properties at the extraction region of the source, focusing on the influence of increasing cesium injection. Only by the combined use of all available source diagnostics, described in this Review, can beam features on the scale of the non-uniformities be investigated with a sufficient space resolution. At RF power of 50 kW/driver, with intermediate bias currents and a filter field of 2.4 mT, it is found that the central part of the four vertical beam segments exhibits comparable plasma density and beamlet currents; at the edges of the central segments, both the beam and electron density appear to decrease (probably maintaining fixed electron-to-ion ratio); at the bottom of the source, an increase of cesium injection can compensate for the vertical drifts that cause a much higher presence of electrons and a lower amount of negative ions.

2.
Rev Sci Instrum ; 92(5): 053507, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243229

ABSTRACT

The neutral beam injectors of the ITER experiment will rely on negative ion sources to produce 16.7 MW beams of H/D particles accelerated at 1 MeV. The prototype of these sources was built and is currently operated in the SPIDER (Source for the Production of Ions of Deuterium Extracted from a Radio frequency plasma) experiment, part of the Neutral Beam Test Facility of Consorzio RFX, Padua. In the SPIDER, the H-/D- ion source is coupled to a three grid, 100 kV acceleration system. One of the main goals of the experimentation in SPIDER is to uniformly maximize the extracted current density; to achieve this, it is important to study the density of negative ions available in the proximity of the ion acceleration system. In SPIDER, line-integrated measurements of negative ion density are performed by a cavity ring down spectroscopy diagnostic. Its principle of operation is based on the absorption of the photons of a laser beam pulse by H-/D- photo-detachment; the absorption detection is enhanced by trapping the laser pulse in an optical cavity, containing the absorbing medium (i.e., negative ions). This paper presents and discusses the CRDS diagnostic setup in the SPIDER, including the first measurements of negative ion density, correlated with the main source parameters.

3.
Rev Sci Instrum ; 92(4): 043302, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243389

ABSTRACT

Beam tomography is a non-invasive diagnostic that allows us to reconstruct the beam emission profile by measuring the light emitted by the beam particles interacting with the background gas, along an elevated number of lines of sight, which is related to the beam density by assuming a uniform background gas. In the framework of the heating and current drive of future nuclear fusion reactors, negative ion beams of hydrogen and deuterium are required for neutral beam injectors (NBIs) due to their elevated neutralization efficiency at high energy (in the MeV range). Beside the beam energy, beam divergence and homogeneity are two critical aspects in the design of future NBIs. In this paper, the characterization of the negative ion beam of the negative ion source NIO1 (a small-sized radio-frequency driven negative ion source, with 130 mA of total extracted H- current and 60 kV of maximum acceleration) using the tomographic system composed of two visible cameras is presented. The Simultaneous Algebraic Reconstruction Technique (SART) is used as an inversion technique to reconstruct the 3 × 3 matrix of the extracted beamlets, and the beam divergence and homogeneity are studied. The results are compared with the measurements of the other diagnostics and correlated with the source physics. The suitability of visible cameras as a diagnostics system for the characterization of the NIO1 negative ion beam is a small-scale experimental demonstration of the possibility to reconstruct more complicated multi-beamlet profiles, resulting in a powerful diagnostic for large NBIs.

4.
Rev Sci Instrum ; 91(2): 023510, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113382

ABSTRACT

The requirements of ITER neutral beam injectors (1 MeV, 40 A negative deuterium ion current for 1 h) have never been simultaneously attained; therefore, a dedicated Neutral Beam Test Facility (NBTF) was set up at Consorzio RFX (Padova, Italy). The NBTF includes two experiments: SPIDER (Source for the Production of Ions of Deuterium Extracted from Rf plasma), the full-scale prototype of the source of ITER injectors, with a 100 keV accelerator, to investigate and optimize the properties of the ion source; and MITICA, the full-scale prototype of the entire injector, devoted to the issues related to the accelerator, including voltage holding at low gas pressure. The present paper gives an account of the status of the procurements, of the timeline, and of the voltage holding tests and experiments for MITICA. As for SPIDER, the first year of operation is described, regarding the solution of some issues connected with the radiofrequency power, the source operation, and the characterization of the first negative ion beam.

5.
Rev Sci Instrum ; 91(1): 013332, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012546

ABSTRACT

The cesium ovens for the prototype source of the ITER neutral beam injectors are currently tested in the CAesium Test Stand (CATS) facility, with a background pressure of 10-6 mbar. Different diagnostics are here installed: two Langmuir-Taylor detectors allow us to determine the Cs vapour evaporation rate from the oven and the Cs density at different positions in the vacuum chamber; and laser absorption spectroscopy is used to measure the density integrated over a line of sight and a quartz crystal microbalance to detect the cesium mass deposited in time over a surface. In this paper, we present a model to describe the dynamic equilibrium in the evaporation chamber of CATS with the first oven tested in order to gain information about the Cs sticking coefficient at the walls. The model hence includes sticking and energy accommodation of the Cs atoms to the walls, calculates the flux density at the surfaces, and provides the Cs atom density at any location in the volume. By this model, we simulate the Cs evaporation and the equilibrium density, comparing the modeled results with the experimental data. As a result, a sticking coefficient of 2% is obtained.

6.
Rev Sci Instrum ; 91(1): 013316, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012575

ABSTRACT

The NIO1 (Negative Ion Optimization phase 1) source can provide continuous beam operation, which is convenient for systematic parameter and equipment studies. Even in the pure volume production regime, the source yield was found to depend on conditioning procedures. Magnetic configuration tests continued adding magnets to the existing setup; the filter field component Bx has been progressively extended to span the -12 to 5 mT range, and as a trend, source performances improved with |Bx|. The progress of camera beam diagnostics and of the quality of the volume-produced H- beam is also shown. The status, off-line results, and reliability of a first NIO1 cesium oven are discussed; other upgrades in preparation (cavity ring down spectrometer, the end calorimeter, and conceptual tests of the energy recovery system) are also listed.

7.
Rev Sci Instrum ; 91(1): 013509, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012577

ABSTRACT

For the ITER fusion experiment, two neutral beam injectors are required for plasma heating and current drive. Each injector supplies a power of about 17 MW, obtained from neutralization of 40 A (46 A), 1 MeV (0.87 MeV) negative deuterium (hydrogen) ions. The full beam is composed of 1280 beamlets, formed in 16 beamlet groups, and strict requirements apply to the beamlet core divergence (<7 mrad). The test facility BATMAN Upgrade uses an ITER-like grid with one beamlet group, which consists of 70 apertures. In a joint campaign performed by IPP and Consorzio RFX to better assess the beam optics, the divergence of a single beamlet was compared to a group of beamlets at BATMAN Upgrade. The single beamlet is measured with a carbon fiber composite tile calorimeter and by beam emission spectroscopy, whereas the divergence of the group of beamlets is measured by beam emission spectroscopy only. When increasing the RF power at low extraction voltages, the divergence of the beamlet and of the group of beamlets is continuously decreasing and no inflection point toward an overperveant beam is found. At the same time, scraping of the extracted ion beam at the second grid (extraction grid) takes place at higher RF power, supported by the absence of the normally seen linear behavior between the measured negative ion density in the plasma close to the extraction system and the measured extracted ion current. Beside its influence on the divergence, beamlet scraping needs to be considered for the determination of the correct perveance and contributes to the measured coextracted electron current.

8.
Rev Sci Instrum ; 89(10): 103504, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399701

ABSTRACT

Cavity Ring Down Spectroscopy (CRDS) is used to measure the D- absolute density produced in the helicon plasma reactor RAID (Resonant Antenna Ion Device) at the Swiss Plasma Center. The birdcage geometry of the helicon antenna produces a homogeneous, high-density plasma column (n e ≅ 1.5 × 1018 m-3 in H2 and D2 at 0.3 Pa and 3 kW of input power) 1.4 m long. We present the CRDS experimental setup, its positioning on the RAID reactor, and how the mechanical and thermal effects of the plasma affect the measurement. First results in deuterium plasma confirm the production of negative ions (D-) with a significant density: an average value of 3.0 × 1016 m-3 of D- is obtained at 0.3 Pa and 5 kW of power input in Cs-free plasma. This result is in good agreement with calculations performed with the collisional radiative code YACORA.

9.
Rev Sci Instrum ; 87(2): 02B318, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932046

ABSTRACT

The neutralization efficiency of negative ion neutral beam injectors is a major issue for future fusion reactors. Photon neutralization might be a valid alternative to present gas neutralizers, but still with several challenges for a valid implementation. Some concepts have been presented so far but none has been validated yet. A novel photoneutralization concept is discussed here, based on an annular cavity and a duplicated frequency laser beam (recirculation injection by nonlinear gating). The choice of lithium triborate as the material for the second harmonic extractor is discussed and a possible cooling method via crystal slicing is presented; laser intensity enhancement within the cavity is evaluated in order to quantify the achievable neutralization rate. Mockups of the critical components are proposed as intermediate steps toward system realization.

10.
Rev Sci Instrum ; 87(2): 02B319, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932047

ABSTRACT

NIO1 (Negative Ion Optimization 1) is a compact and flexible radio frequency H(-) ion source, developed by Consorzio RFX and INFN-LNL. The aim of the experimentation on NIO1 is the optimization of both the production of negative ions and their extraction and beam optics. In the initial phase of its commissioning, NIO1 was operated with nitrogen, but now the source is regularly operated also with hydrogen. To evaluate the source performances, an optical emission spectroscopy diagnostic was installed. The system includes a low resolution spectrometer in the spectral range of 300-850 nm and a high resolution (50 pm) one, to study, respectively, the atomic and the molecular emissions in the visible range. The spectroscopic data have been interpreted also by means of a collisional-radiative model developed at IPP Garching. Besides the diagnostic hardware and the data analysis methods, the paper presents the first plasma measurements across a transition to the full H mode, in a hydrogen discharge. The characteristic signatures of this transition in the plasma parameters are described, in particular, the sudden increase of the light emitted from the plasma above a certain power threshold.

11.
Rev Sci Instrum ; 87(2): 02B320, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932048

ABSTRACT

Neutral Beam Injectors (NBIs), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact radio frequency (rf) ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, was installed at Consorzio RFX, including a high voltage deck and an X-ray shield, to provide a test bench for source optimizations for activities in support to the ITER NBI test facility. NIO1 status and plasma experiments both with air and with hydrogen as filling gas are described. Transition from a weak plasma to an inductively coupled plasma is clearly evident for the former gas and may be triggered by rising the rf power (over 0.5 kW) at low pressure (equal or below 2 Pa). Transition in hydrogen plasma requires more rf power (over 1.5 kW).

12.
Ann Med Health Sci Res ; 5(6): 476-9, 2015.
Article in English | MEDLINE | ID: mdl-27057391

ABSTRACT

During pregnancy, high progesterone and relaxin levels produce physiological ligament relaxation on the pelvis. Therefore, moderate pubic symphysis and sacroiliac joints relaxing provide birth canal widening, thereby facilitating vaginal delivery. Sometimes, functional pain or pelvic instability may occur during pregnancy or puerperium, which is defined as symptomatic pelvic girdle relaxation. In rare cases, a pubic symphysis disruption can occur during the labor, causing severe pain and functional limitations. The early recognition of this injury is crucial to prevent complications and improve clinical and functional outcomes. This study reports an acute symphyseal disruption resulting from childbirth in a primiparous patient who underwent open reduction and internal fixation with plate and screws. After a 6 months follow-up, the patient presented no pain and satisfactory functional recovery.

13.
Rev Sci Instrum ; 85(11): 11E430, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430337

ABSTRACT

A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.

14.
Rev Sci Instrum ; 85(2): 02A704, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593438

ABSTRACT

Neutral Beam Injectors (NBI), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact RF ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, is being installed at Padua, in Consorzio RFX, to provide a test bench for source optimizations in the framework of the accompanying activities in support to the ITER NBI test facility. NIO1 construction and status of the overall installation, including a high voltage deck and an optical cavity ring down spectrometer are here summarized and reported. Plasma and low voltage beam operations are discussed. Development of a sampling beam calorimeter (with small sampling holes, and a segmented cooling circuit) is also discussed.

15.
Rev Sci Instrum ; 85(2): 02A708, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593442

ABSTRACT

Consorzio RFX and INFN-LNL are building a flexible small ion source (Negative Ion Optimization 1, NIO1) capable of producing about 130 mA of H(-) ions accelerated at 60 KeV. Aim of the experiment is to test and develop the instrumentation for SPIDER and MITICA, the prototypes, respectively, of the negative ion sources and of the whole neutral beam injectors which will operate in the ITER experiment. As SPIDER and MITICA, NIO1 will be monitored with beam emission spectroscopy (BES), a non-invasive diagnostic based on the analysis of the spectrum of the Hα emission produced by the interaction of the energetic ions with the background gas. Aim of BES is to monitor direction, divergence, and uniformity of the ion beam. The precision of these measurements depends on a number of factors related to the physics of production and acceleration of the negative ions, to the geometry of the beam, and to the collection optics. These elements were considered in a set of codes developed to identify the configuration of the diagnostic which minimizes the measurement errors. The model was already used to design the BES diagnostic for SPIDER and MITICA. The paper presents the model and describes its application to design the BES diagnostic in NIO1.

16.
Rev Sci Instrum ; 83(4): 043117, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22559525

ABSTRACT

A facility will be built in Padova (Italy) to develop, commission, and optimize the neutral beam injection system for ITER. The full scale prototype negative ion radio frequency source SPIDER, featuring up to 100 kV acceleration voltage, includes a full set of diagnostics, required for safe operation and to measure and optimize the beam performance. Among them, beam emission spectroscopy (BES) will be used to measure the line integrated beam uniformity, divergence, and neutralization losses inside the accelerator (stripping losses). In the absence of the neutralization stage, SPIDER beam is mainly composed by H(-) or D(-) particles, according to the source filling gas. The capability of a spectroscopic diagnostic of an H(-) (D(-)) beam relies on the interaction of the beam particles with the background gas particles. The BES diagnostic will be able to acquire the H(α) (D(α)) spectrum from up to 40 lines of sight. The system is capable to resolve stripping losses down to 2 keV and to measure beam divergence with an accuracy of about 10%. The design of this diagnostic is reported, with discussion of the layout and its components, together with simulations of the expected performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...