Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(43): eabh2819, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34678067

ABSTRACT

Recent studies suggest increasing sensitivity to orbital variations across the Eocene-Oligocene greenhouse to icehouse climate transition. However, climate simulations and paleoenvironmental studies mostly provide snapshots of the past climate, therefore overlooking the role of this short-term variability in driving major environmental changes and possibly biasing model-data comparisons. We address this problem by performing numerical simulations describing the end-members of eccentricity, obliquity, and precession. The orbitally induced biome variability obtained in our simulations allows to reconcile previous apparent mismatch between models and paleobotanical compilations. We show that precession-driven intermittent monsoon-like climate may have taken place during the Eocene, resulting in biomes shifting from shrubland to tropical forest in the intertropical convergence zone migration region. Our Oligocene simulations suggest that, along with decreased pCO2, orbital variations crucially modulated major faunal dispersal events around the EOT such as the Grande Coupure by creating and fragmenting the biome corridors along several key land bridges.

2.
Nat Commun ; 11(1): 5249, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067447

ABSTRACT

The first major build-up of Antarctic glaciation occurred in two consecutive stages across the Eocene-Oligocene transition (EOT): the EOT-1 cooling event at ~34.1-33.9 Ma and the Oi-1 glaciation event at ~33.8-33.6 Ma. Detailed orbital-scale terrestrial environmental responses to these events remain poorly known. Here we present magnetic and geochemical climate records from the northeastern Tibetan Plateau margin that are dated precisely from ~35.5 to 31 Ma by combined magneto- and astro-chronology. These records suggest a hydroclimate transition at ~33.7 Ma from eccentricity dominated cycles to oscillations paced by a combination of eccentricity, obliquity, and precession, and confirm that major Asian aridification and cooling occurred at Oi-1. We conclude that this terrestrial orbital response transition coincided with a similar transition in the marine benthic δ18O record for global ice volume and deep-sea temperature variations. The dramatic reorganization of the Asian climate system coincident with Oi-1 was, thus, a response to coeval atmospheric CO2 decline and continental-scale Antarctic glaciation.

SELECTION OF CITATIONS
SEARCH DETAIL
...