Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
2.
Exp Parasitol ; 262: 108771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723847

ABSTRACT

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.


Subject(s)
Diterpenes , Fabaceae , Plant Extracts , Toxoplasma , HeLa Cells , Humans , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Fabaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , Cytokines/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation
3.
Parasitol Res ; 123(5): 217, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772951

ABSTRACT

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Subject(s)
Autophagy , Oils, Volatile , Origanum , Reactive Oxygen Species , Toxoplasma , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Origanum/chemistry , Humans , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Cell Line , Antiprotozoal Agents/pharmacology , Inhibitory Concentration 50 , Necrosis/drug therapy , Cell Survival/drug effects , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects
5.
J Trop Med ; 2024: 1514178, 2024.
Article in English | MEDLINE | ID: mdl-38419946

ABSTRACT

Objective: To understand how congenital toxoplasmosis (CT) diagnosis has evolved over the years, we performed a systematic review and meta-analysis to summarize the kind of analysis that has been employed for CT diagnosis. Methods: PubMed and Lilacs databases were used in order to access the kind of analysis that has been employed for CT diagnosis in several samples. Our search combined the following combining terms: "congenital toxoplasmosis" or "gestational toxoplasmosis" and "diagnosis" and "blood," "serum," "amniotic fluid," "placenta," or "colostrum." We extracted data on true positive, true negative, false positive, and false negative to generate pooled sensitivity, specificity, and diagnostic odds ratio (DOR). Random-effects models using MetaDTA were used for analysis. Results: Sixty-five articles were included in the study aiming for comparisons (75.4%), diagnosis performance (52.3%), diagnosis improvement (32.3%), or to distinguish acute/chronic infection phases (36.9%). Amniotic fluid (AF) and placenta were used in 36.9% and 10.8% of articles, respectively, targeting parasites and/or T. gondii DNA. Blood was used in 86% of articles for enzymatic assays. Colostrum was used in one article to search for antibodies. In meta-analysis, PCR in AF showed the best performance for CT diagnosis based on the highest summary sensitivity (85.1%) and specificity (99.7%) added to lower magnitude heterogeneity. Conclusion: Most of the assays being researched to diagnose CT are basically the same traditional approaches available for clinical purposes. The range in diagnostic performance and the challenges imposed by CT diagnosis indicate the need to better explore pregnancy samples in search of new possibilities for diagnostic tools. Exploring immunological markers and using bioinformatics tools and T. gondii recombinant antigens should address the research needed for a new generation of diagnostic tools to face these challenges.

6.
Front Immunol ; 14: 1243480, 2023.
Article in English | MEDLINE | ID: mdl-37915581

ABSTRACT

Introduction: Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods: In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results: Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion: In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.


Subject(s)
Chagas Disease , Toxoplasmosis , Trypanosoma cruzi , Infant, Newborn , Humans , Female , Pregnancy , Placenta/pathology , Interleukin-8 , Toxoplasmosis/pathology , Chagas Disease/pathology , Recombinant Proteins
7.
Chem Biol Interact ; 384: 110716, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37722575

ABSTRACT

Congenital toxoplasmosis, caused by the opportunistic protozoan parasite T. gondii, can cause stillbirths, miscarriages and fetal abnormalities, as well as encephalitis and chorioretinitis in newborns. Available treatment options rely on antiparasitic drugs that have been linked to serious side effects, high toxicity and the development of drug-resistant parasites. The search for alternative therapeutics to treat this disease without acute toxicity for the mother and child is essential for the advancement of current therapeutic procedures. The present study aimed to unravel the mode of the anti-T. gondii action of Rottlerin, a natural polyphenol with multiple pharmacological properties described. Herein, we further assessed the antiparasitic activity of Rottlerin against T. gondii infection on the human trophoblastic cells (BeWo cells) and, for the first time, on human villous explants. We found that non-cytotoxic doses of Rottlerin impaired early and late steps of parasite infection with an irreversible manner in BeWo cells. Rottlerin caused parasite cell cycle arrest in G1 phase and compromised the ability of tachyzoites to infect new cells, thus highlighting the possible direct action on parasites. An additional and non-exclusive mechanism of action of Rottlerin involves the modulation of host cell components, by affecting lipid droplet formation, mitochondrial function and upregulation of the IL-6 and MIF levels in BeWo cells. Supporting our findings, Rottlerin also controlled T. gondii proliferation in villous explants with low toxicity and reduced the IL-10 levels, a cytokine associated with parasite susceptibility. Collectively, our results highlighted the potential use of Rottlerin as a promising tool to prevent and/or treat congenital toxoplasmosis.

8.
Exp Parasitol ; 250: 108534, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37100271

ABSTRACT

Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.


Subject(s)
Fabaceae , Toxoplasma , Humans , Pregnancy , Female , Plant Extracts/pharmacology
9.
Microbes Infect ; 25(6): 105123, 2023.
Article in English | MEDLINE | ID: mdl-36870599

ABSTRACT

One-third of the world's population is estimated to be affected by toxoplasmosis. Pregnancy-related Toxoplasma gondii infection can cause vertical transmission, infect the fetus, and cause miscarriage, stillbirth, and fetal death. The current study showed that both human trophoblast cells (BeWo lineage) and human explant villous were resistant to T. gondii infection after incubation with BjussuLAAO-II, an l-amino acid oxidase isolated from Bothrops jararacussu. Almost 90% of the parasite's ability to proliferate in BeWo cells was decreased by the toxin at 1.56 µg/mL and showed an irreversible anti-T. gondii effect. Also, BjussuLAAO-II impaired the key events of adhesion and invasion of T. gondii tachyzoites in BeWo cells. BjussuLAAO-II antiparasitic properties were associated with the intracellular production of reactive oxygen species and hydrogen peroxide, since the presence of catalase restored the parasite's growth and invasion. In addition, T. gondii growth in human villous explants was decreased to approximately 51% by the toxin treatment at 12.5 µg/mL. Furthermore, BjussuLAAO-II treatment altered IL-6, IL-8, IL-10 and MIF cytokines levels, assuming a pro-inflammatory profile in the control of T. gondii infection. This study contributes to the potential use of a snake venom l-amino acid oxidase for the development of agents against congenital toxoplasmosis and the discovery of new targets in parasites and host cells.


Subject(s)
Bothrops , Toxoplasma , Toxoplasmosis , Pregnancy , Female , Animals , Humans , Trophoblasts/parasitology , Pregnancy Trimester, Third , L-Amino Acid Oxidase/pharmacology , Toxoplasmosis/parasitology , Snake Venoms
10.
Front Cell Infect Microbiol ; 13: 1113896, 2023.
Article in English | MEDLINE | ID: mdl-36860986

ABSTRACT

The conventional treatment of congenital toxoplasmosis is mainly based on the combination of sulfadiazine and pyrimethamine. However, therapy with these drugs is associated with severe side effects and resistance, requiring the study of new therapeutic strategies. There are currently many studies with natural products, including Copaifera oleoresin, showing actions against some pathogens, as Trypanosoma cruzi and Leishmania. In the present study, we investigated the effects of the leaf hydroalcoholic extract and oleoresin from Copaifera multijuga against Toxoplasma gondii in human villous (BeWo) and extravillous (HTR8/SVneo) trophoblast cells, as well as in human villous explants from third-trimester pregnancy. For this purpose, both cells and villous explants were infected or not with T. gondii, treated with hydroalcoholic extract or oleoresin from C. multijuga and analyzed for toxicity, parasite proliferation, cytokine and ROS production. In parallel, both cells were infected by tachyzoites pretreated with hydroalcoholic extract or oleoresin, and adhesion, invasion and replication of the parasite were observed. Our results showed that the extract and oleoresin did not trigger toxicity in small concentrations and were able to reduce the T. gondii intracellular proliferation in cells previously infected. Also, the hydroalcoholic extract and oleoresin demonstrated an irreversible antiparasitic action in BeWo and HTR8/SVneo cells. Next, adhesion, invasion and replication of T. gondii were dampened when BeWo or HTR8/SVneo cells were infected with pretreated tachyzoites. Finally, infected and treated BeWo cells upregulated IL-6 and downmodulated IL-8, while HTR8/SVneo cells did not change significantly these cytokines when infected and treated. Finally, both the extract and oleoresin reduced the T. gondii proliferation in human explants, and no significant changes were observed in relation to cytokine production. Thus, compounds from C. multijuga presented different antiparasitic activities that were dependent on the experimental model, being the direct action on tachyzoites a common mechanism operating in both cells and villi. Considering all these parameters, the hydroalcoholic extract and oleoresin from C. multijuga can be a target for the establishment of new therapeutic strategy for congenital toxoplasmosis.


Subject(s)
Fabaceae , Toxoplasmosis, Congenital , Pregnancy , Humans , Female , Trophoblasts , Placenta , Pregnancy Trimester, Third , Plant Extracts/pharmacology , Antiparasitic Agents , Cytokines
11.
Immunobiology ; 228(3): 152357, 2023 05.
Article in English | MEDLINE | ID: mdl-36857907

ABSTRACT

Cytokines are small molecules secreted by numerous cells. Macrophage Migration Inhibitory Factor (MIF) is a cytokine initially described due to its function of inhibiting random macrophage migration. Currently, new functions have been described for MIF, such as stimulating inflammatory functions in response to infections by microorganisms including, Toxoplasma gondii. However, the primordial MIF function related to macrophages has been little addressed. The main purpose of the study was to recapitulate MIF function on macrophages in response to T. gondii infection. To achieve this goal, peritoneal macrophages were collected from C57BL/6WT and Mif1-/- mice after recruitment with thioglycolate. Macrophages were cultured, treated with 4-Iodo-6-phenylpyrimidine (4-IPP), and infected or not by T. gondii for 24 h. Following this, the culture supernatant was collected for cytokine, urea and nitrite analysis. In addition, macrophages were evaluated for phagocytic activity and T. gondii proliferation rates. Results demonstrated that T. gondii infection triggered an increase in MIF production in the WT group as well as an increase in the secretion of IL-10, TNF, IFN-γ, IL-6 and IL-17 in the WT and Mif1-/- macrophages. Regarding the comparison between groups, it was detected that Mif1-/- macrophages secreted more IL-10 compared to WT. On the other hand, the WT macrophages produced greater amounts of TNF, IFN-γ, IL-6 and IL-17. Urea production was more pronounced in Mif1-/- macrophages while nitrite production was higher in WT macrophages. T. gondii showed a greater ability to proliferate in Mif1-/- macrophages and these cells also presented enhanced phagocytic activity. In conclusion, T. gondii infection induces macrophage activation inciting cytokine production. In presence of MIF, T. gondii infected macrophages produce pro-inflammatory cytokines compatible with the M1 activation profile. MIF absence caused a dramatic reduction in pro-inflammatory cytokines that are balanced by increased levels of urea and anti-inflammatory cytokines. These macrophages presented increased phagocytic capacity and shared features activation with the M2 profile.


Subject(s)
Macrophage Migration-Inhibitory Factors , Toxoplasma , Toxoplasmosis , Animals , Mice , Interleukin-10 , Interleukin-17 , Interleukin-6 , Macrophage Activation , Mice, Inbred C57BL , Nitrites , Toxoplasma/physiology
12.
Curr Res Microb Sci ; 3: 100173, 2022.
Article in English | MEDLINE | ID: mdl-36518177

ABSTRACT

Trichoderma are fungi that are well-known to inhibit the growth of a variety of plant pathogens. Currently, there is an increasing search for new drugs to treat toxoplasmosis. The aims of this study were to investigate the effect of ExtTs in the control of Toxoplasma gondii proliferation in vitro and the course of toxoplasmosis in a mouse model. Firstly, the cytotoxicity of the ExtTs was evaluated by cultivating macrophages with different concentrations of the extract and cell viability was assessed by the MTT assay. Next, the infectivity of the T. gondii treated with extract was analyzed by infecting J774 macrophages. To evaluate the effect of the ExtTs in vivo, C57BL/6 mice were infected orally with T. gondii, ME-49, treated daily with ExtTs, and clinical, biochemical and histological changes were monitored. It was demonstrated that the extract did not affect the host cellular viability and, the treatment of parasites with ExtTs altered their morphology and decreased their ability to proliferate inside macrophages. Additionally, the treatment of mice with ExtTs decreased the parasitism and inflammation in the small intestine and liver of infected mice in parallel with increased IL-10/TNF ratio systemically and prevented alterations to serum VLDL and triglyceride levels. Thus, ExtTs could be considered an alternative/complementary therapy to control toxoplasmosis.

13.
Folia Parasitol (Praha) ; 692022 Oct 04.
Article in English | MEDLINE | ID: mdl-36227152

ABSTRACT

Toxoplasma gondii Nicolle et Manceaux, 1909, the etiologic agent of toxoplasmosis, was considered a clonal population with three distinct genetic lineages (I, II and III); however, sequence analysis of different strains has revealed distinct atypical genotypes. Macrophages are essential for immunity against toxoplasmosis and differential cell regulation may affect the course of the disease. In this context, our study aims to investigate the infection by TgChBrUD2, a highly virulent atypical Brazilian strain of T. gondii, on the activation and polarisation of human macrophages. Human macrophage-like cells obtained from THP-1 cells were infected with TgChBrUD2, RH or ME49 strains of T. gondii to evaluate the impact of parasite infection on macrophage polarisation. Our results indicate that the TgChBrUD2 and ME49 strains of T. gondii induced a classic activation of human macrophages, which was confirmed by the high rate of spindle-shaped macrophages, low amount of urea and increase in the levels of nitrite, as well as the down-regulation of M2-markers. In contrast, RH strain promoted an alternative activation of macrophages. The polarisation of human macrophages towards an M1 subtype mediated by TgChBrUD2 and ME49 strains resulted in a low parasite burden, with high levels of IL-6 and MIF. Finally, the M2 subtype triggered by the RH strain culminated in a lower intracellular proliferation index. We concluded that the atypical (TgChBrUD2) and clonal (ME49) strains are able to elicit an M1 subtype, which results in parasitism control, partially explained by the high levels of IL-6 and MIF produced during the infection by these genotypes. In contrast, the clonal (RH) strain promoted a macrophage polarisation towards an M2 subtype, marked by a high parasite burden, with a weak modulation of pro-inflammatory cytokines. Thus, atypical strains can present different mechanisms of pathogenicity and transmissibility compared to clonal strains, as well as they can use distinct strategies to evade the host's immune response and ensure their survival.


Subject(s)
Parasites , Toxoplasma , Toxoplasmosis , Animals , Brazil/epidemiology , Cytokines , Humans , Interleukin-6 , Macrophages/parasitology , Nitrites , Urea
14.
Tissue Cell ; 78: 101907, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36037656

ABSTRACT

We evaluated the influence of the Toll-like receptor (TLR)-4 pathways on BeWo, JEG-3 and HTR-8/SVneo cells, as well as in human villous explants infected with Toxoplasma gondii. Cells and explants were stimulated with LPS for 24 or 48 h and processed for the MTT assay, and expression of TLR4 was evaluated by confocal microscopy. In addition, we used peptides that inhibit MyD88 or TRIF, and inhibitor to NF-κB. Finally, the parasite proliferation was verified, and ELISA was performed to verify the cytokine production. As results, LPS did not induce toxicity in cells and explants. However, LPS triggered a reduction in T. gondii proliferation only in BeWo cells and explants. Additionally, LPS downmodulated IL-10, TGF-ß1 and TNF, but upregulated IFN-γ in BeWo cells. For explants, LPS induced high levels of IL-10, TGF-ß1 and IFN-γ. Finally, it was observed that the inhibition of TRIF and NF-κB increased parasitism and modulated TGF-ß1 in BeWo cells, while the inhibition of MyD88 and NF-κB increased T. gondii infection and modulated IFN-γ in explants. It can be concluded that the TLR4 pathway is important for the control of T. gondii replication in BeWo cells and villous explants, in a dependent-manner of TRIF, MyD88, NF-κB and cytokines.


Subject(s)
Toxoplasma , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cell Line, Tumor , Cytokines/metabolism , Humans , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Toxoplasma/metabolism , Transforming Growth Factor beta1/metabolism , Trophoblasts/metabolism
15.
Tissue Cell ; 73: 101658, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34597888

ABSTRACT

Crosstalk between trophoblast and monocytes is essential for gestational success, and it can be compromised in congenital toxoplasmosis. Cell death is one of the mechanisms involved in the maintenance of pregnancy, and this study aimed to evaluate the role of trophoblast in the modulation of monocyte cell death in the presence or absence of Toxoplasma gondii infection. THP-1 cells were stimulated with supernatants of BeWo cells and then infected or not with T. gondii. The supernatants were collected and analyzed for the secretion of human Fas ligand, and cells were used to determine cell death and apoptosis, cell death receptor, and intracellular proteins expression. Cell death and apoptosis index were higher in uninfected THP-1 cells stimulated with supernatants of BeWo cells; however, apoptosis index was reduced by T. gondii infection. Macrophage migration inhibitory factor (MIF) and transforming growth factor (TGF)-ß1, secreted by BeWo cells, altered the cell death and apoptosis rates in THP-1 cells. In infected THP-1 cells, the expression of Fas/CD95 and secretion of FasL was significantly higher; however, caspase 3 and phosphorylated extracellular-signal-regulated kinase (ERK1/2) were downregulated. Results suggest that soluble factors secreted by BeWo cells induce cell death and apoptosis in THP-1 cells, and Fas/CD95 can be involved in this process. On the other hand, T. gondii interferes in the mechanism of cell death and inhibits THP-1 cell apoptosis, which can be associated with active caspase 3 and phosphorylated ERK1/2. In conclusion, our results showed that human BeWo trophoblast cells and T. gondii infection modulate cell death in human THP-1 monocyte cells.


Subject(s)
Intracellular Space/metabolism , Monocytes/pathology , Monocytes/parasitology , Proteins/metabolism , Receptors, Death Domain/metabolism , Toxoplasmosis/pathology , Trophoblasts/parasitology , Caspase 3/metabolism , Cell Death/drug effects , Cell Line , Culture Media, Conditioned/pharmacology , Down-Regulation/drug effects , Fas Ligand Protein/metabolism , Humans , MAP Kinase Signaling System/drug effects , Macrophage Migration-Inhibitory Factors/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Phosphorylation/drug effects , THP-1 Cells , Trophoblasts/drug effects , Trophoblasts/metabolism , fas Receptor/metabolism
16.
Acta Trop ; 224: 106111, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34450063

ABSTRACT

Toxoplasma gondii is a parasite able to infect various cell types, including trophoblast cells. Studies have demonstrated that interleukin (IL)-10, transforming growth factor (TGF)-ß1 and interferon (IFN)-γ are involved in the susceptibility of BeWo trophoblast cells to T. gondii infection. Furthermore, T. gondii is able to adhere to the plasma membrane of host cells through intercellular adhesion molecule (ICAM)-1. Thus, the present study aimed to assess the role of IL-10, TGF-ß1 and IFN-γ in the expression of ICAM-1 in BeWo and HeLa cells and to analyze the role of ICAM-1 in the adhesion and invasion of T. gondii to these cells under the influence of these cytokines. For this purpose, BeWo and HeLa cells were treated or not, before and after T. gondii infection, with rIL-10, rTGF-ß1 or rIFN-γ. For the BeWo cells, rIL-10 and rTGF-ß1 favored susceptibility to infection, but only rTGF-ß1 and rIFN-γ increased ICAM-1 expression, and TNF-α release. On the other hand, rIFN-γ downregulated the expression of ICAM-1 triggered by T. gondii in HeLa cells, leading to control of the infection. Moreover, we observed that upregulation of ICAM-1, mediated by cytokine's stimulation, in BeWo and HeLa cells resulted in a high number rate of both parasite adhesion and invasion to these cells, which were strongly reduced after ICAM-1 neutralization. Likewise, the blockage of ICAM-1 molecule also impaired T. gondii infection in human villous explants. Taken together, these findings demonstrate that TGF-ß1 and IFN-γ differentially regulate ICAM-1 expression, which may interfere in the adhesion/invasion of T. gondii to BeWo and HeLa cells for modulating susceptibility to infection.


Subject(s)
Toxoplasma , HeLa Cells , Humans , Intercellular Adhesion Molecule-1 , Interferons , Transforming Growth Factor beta1 , Trophoblasts
17.
Sci Rep ; 11(1): 12709, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135407

ABSTRACT

Congenital toxoplasmosis is represented by the transplacental passage of Toxoplasma gondii from the mother to the fetus. Our studies demonstrated that T. gondii developed mechanisms to evade of the host immune response, such as cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) induction, and these mediators can be produced/stored in lipid droplets (LDs). The aim of this study was to evaluate the role of COX-2 and LDs during T. gondii infection in human trophoblast cells and villous explants. Our data demonstrated that COX-2 inhibitors decreased T. gondii replication in trophoblast cells and villous. In BeWo cells, the COX-2 inhibitors induced an increase of pro-inflammatory cytokines (IL-6 and MIF), and a decrease in anti-inflammatory cytokines (IL-4 and IL-10). In HTR-8/SVneo cells, the COX-2 inhibitors induced an increase of IL-6 and nitrite and decreased IL-4 and TGF-ß1. In villous explants, the COX-2 inhibitors increased MIF and decreased TNF-α and IL-10. Furthermore, T. gondii induced an increase in LDs in BeWo and HTR-8/SVneo, but COX-2 inhibitors reduced LDs in both cells type. We highlighted that COX-2 is a key factor to T. gondii proliferation in human trophoblast cells, since its inhibition induced a pro-inflammatory response capable of controlling parasitism and leading to a decrease in the availability of LDs, which are essentials for parasite growth.


Subject(s)
Chorionic Villi/parasitology , Cyclooxygenase 2/metabolism , Lipid Droplets/metabolism , Toxoplasma/growth & development , Trophoblasts/parasitology , Cell Line , Cell Survival/drug effects , Chorionic Villi/immunology , Chorionic Villi/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Extracellular Matrix Proteins/metabolism , Host-Parasite Interactions , Humans , Interleukins/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Nitrites/metabolism , Toxoplasma/immunology , Transforming Growth Factor beta/metabolism , Trophoblasts/immunology , Trophoblasts/metabolism
18.
Front Microbiol ; 12: 659028, 2021.
Article in English | MEDLINE | ID: mdl-33912151

ABSTRACT

Heme oxygenase-1 (HO-1) enzyme exerts beneficial effects at the maternal-fetal interface, especially in trophoblasts, being involved in survival and maturation of these cell phenotypes. Trophoblast cells play essential roles throughout pregnancy, being the gateway for pathogens vertically transmitted, such as Toxoplasma gondii. It was previously shown that HO-1 activity was involved in the control of T. gondii infection in vivo; however, its contribution in trophoblast cells during T. gondii infection, remain undefined. Thus, this study aimed to investigate the influence of HO-1 in T. gondii-infected BeWo and HTR-8/SVneo human trophoblast cells. For this purpose, trophoblast cells were infected and the HO-1 expression was evaluated. T. gondii-infected BeWo cells were treated with hemin or CoPPIX, as inducers of HO-1, or with bilirubin, an end-product of HO-1, and the parasitism was quantified. The involvement of p38 MAPK, a regulator of HO-1, and the cytokine production, were also evaluated. It was found that T. gondii decreased the HO-1 expression in BeWo but not in HTR-8/SVneo cells. When treated with the HO-1 inducers or bilirubin, BeWo cells reduced the parasite proliferation. T. gondii also decreased the p38 MAPK phosphorylation in BeWo cells; on the other hand, HO-1 induction sustained its activation. Finally, the IL-6 production was upregulated by HO-1 induction in T. gondii-infected cells, which was associated with the control of infection.

19.
Tissue Cell ; 72: 101544, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33892398

ABSTRACT

During pregnancy, Toxoplasma gondii can triggers serious manifestations and potentially affect the fetal development. In this scenario, differences in susceptibility of trophoblast cells to T. gondii infection might be evaluated in order to establish new therapeutic approaches capable of interfering in the control of fetal infection by T. gondii. This study aimed to evaluate the susceptibility of cytotrophoblast, syncytiotrophoblast and extravillous trophoblast cells to T. gondii infection. Our data demonstrate that HTR-8/SVneo cells (extravillous trophoblast cells) present higher susceptibility to T. gondii infection when compared to syncytiotrophoblast and cytotrophoblast cells, whereas syncytiotrophoblast was the cell type more resistant to the parasite infection. Also, cytotrophoblast and syncytiotrophoblast cells produced significantly more IL-6 than HTR-8/SVneo cells. On the other hand, HTR-8/SVneo cells showed higher ERK1/2 phosphorylation than cytotrophoblast and syncytiotrophoblast cells. ERK1/2 inhibition reduced T. gondii infection and increased IL-6 production in HTR-8/SVneo cells. Thus, it is plausible to conclude that the greater susceptibility of HTR-8/SVneo cells to infection by T. gondii is related to a higher ERK1/2 phosphorylation and lower levels of IL-6 in these cells compared to other cells, suggesting that these mediators may be important to favor the parasite infection in this type of trophoblastic population.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Giant Cells/pathology , Interleukin-6/biosynthesis , Toxoplasmosis/pathology , Trophoblasts/pathology , Trophoblasts/parasitology , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Disease Susceptibility , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Humans , Phosphorylation , Up-Regulation
20.
Sci Rep ; 10(1): 15158, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938966

ABSTRACT

The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.


Subject(s)
Antiprotozoal Agents/pharmacology , Fabaceae/chemistry , Plant Extracts/pharmacology , Pregnancy Complications, Parasitic/drug therapy , Toxoplasmosis/complications , Toxoplasmosis/drug therapy , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/isolation & purification , Cell Cycle Checkpoints/drug effects , Cell Line , Cytokines/metabolism , Dose-Response Relationship, Drug , Fabaceae/classification , Female , Host-Parasite Interactions/drug effects , Humans , Microscopy, Electron, Transmission , Phytotherapy , Placenta/drug effects , Placenta/parasitology , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Reactive Oxygen Species/metabolism , Toxoplasma/cytology , Toxoplasma/drug effects , Toxoplasma/pathogenicity , Toxoplasmosis/parasitology , Trophoblasts/drug effects , Trophoblasts/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...