Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 155: 667-683, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36328124

ABSTRACT

The host inflammatory response to biomaterials conditions their capacity to promote tissue repair, and macrophage polarization shift from M1 to M2 is determinant in this process. Previous work showed that extracts of a combination between fibrinogen and metallic magnesium materials acted synergistically to reduce macrophage inflammatory phenotype. The hypothesis underlying the current work was that the ability of magnesium-modified fibrinogen scaffolds to modulate macrophage phenotype depends on the concentration of magnesium. Thus, Fibrinogen (Fg) scaffolds incorporating precise concentrations of magnesium sulfate (Mg: 0, 10, 25, 50 mM) were developed and characterized. Mg incorporation in Fg scaffolds increased surface charge, while porosity decreased with increasing Mg concentrations, but only Fg scaffolds with 10 mM of Mg (FgMg10) had significantly improved mechanical properties. Human macrophages cultured on FgMg10 scaffolds, showed increased M2 and decreased M1 polarization, when compared to those cultured on scaffolds with 0, 25 and 50 mM of Mg. Macrophage polarization results were independent of the anion used (chloride or sulfate). Macrophage modulation by FgMg10 scaffolds involved reduced NF-κB p65 nuclear translocation, and impacted production of pro-inflammatory mediators (e.g. IFNγ, IL-12, TNF-⍺, IP-10). Importantly, FgMg10 scaffolds implanted in vivo increased the expression of M2 marker CD163, in macrophages from inflammatory exudates, compared to Sham and Fg-implanted animals, increasing the M2:M1 ratio. A cytokine/chemokine array showed that, while both Fg and FgMg10 scaffolds decreased inflammatory mediators, only FgMg10 decreased IL-1ß, IP-10, MIP-2, MDC and MIP-3⍺, compared to Sham-operated animals. This study demonstrated that incorporation of 10mM of Mg modulated inflammation, promoting M2 macrophage polarization in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Developing biomaterials that can modulate inflammation and promote macrophage phenotype switch from M1 to M2 is crucial to promote a regenerative microenvironment. Our previous work showed that extracts of a combination between fibrinogen (Fg) and metallic magnesium (Mg) materials synergistically reduced macrophage pro-inflammatory phenotype. Herein, we tested the hypothesis that macrophage modulation was dependent on Mg concentration. A new family of Fg porous scaffolds incorporating different amounts of Mg (0, 10, 25 and 50 mM) was produced and characterized. We observed that only the combination of Fg scaffolds with 10 mM of Mg (FgMg10) significantly changed the scaffolds mechanical properties and directed macrophages towards a M2 phenotype, reducing the production of inflammatory mediators, both in vitro and in vivo.


Subject(s)
Fibrinogen , Magnesium , Animals , Humans , Biocompatible Materials/metabolism , Chemokine CXCL10/metabolism , Fibrinogen/metabolism , Inflammation/metabolism , Macrophages/metabolism , Magnesium/pharmacology , Magnesium/metabolism , Phenotype
2.
Biomaterials ; 228: 119554, 2020 01.
Article in English | MEDLINE | ID: mdl-31677395

ABSTRACT

Successful strategies to promote neovascularization of ischemic tissues are still scarce, being a central priority in regenerative medicine. Microparticles harboring primitive vascular beds are appealing cell delivery candidates for minimally-invasive therapeutic vascularization. However, dynamic cellular alterations associated with in vitro vascular morphogenesis are still elusive. Here, bioengineered microgels guided the assembly of entrapped outgrowth endothelial cells (OEC) and mesenchymal stem cells (MSC) into cohesive vascularized microtissues. During in vitro maturation, OEC formed capillary-like networks enveloped in newly-formed extracellular matrix. Gene expression profiling showed that OEC acquired a mesenchymal-like phenotype, suggesting the occurrence of partial endothelial-to-mesenchymal transition (EndMT), while MSC remained transcriptionally stable. The secretome of entrapped cells became more pro-angiogenic, with no significant alterations of the inflammatory profile. Importantly, matured microgels showed improved cell survival/retention after transplantation in mice, with preservation of capillary-like networks and de novo formation of human vascular structures. These findings support that in vitro priming and morphogenesis of vessel-forming cells improves their vasculogenic/angiogenic potential, which is of therapeutic relevance, shedding some light on the associated mechanisms.


Subject(s)
Mesenchymal Stem Cells , Microgels , Animals , Endothelial Cells , Mice , Morphogenesis , Neovascularization, Physiologic , Tissue Engineering
3.
Acta Biomater ; 9(7): 7209-17, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23571000

ABSTRACT

Designing new biomaterials that can modulate the inflammatory response instead of attempting just to reduce it constitutes a paradigm change in regenerative medicine. This work aimed to investigate the capacity of an immunomodulatory biomaterial to enhance bone regeneration. For that purpose we incorporated a molecule with well-established pro-inflammatory and pro-healing roles, fibrinogen, in chitosan scaffolds. Two different incorporation strategies were tested, leading to concentrations of 0.54±0.10mg fibrinogen g(-1) scaffold immediately upon adsorption (Fg-Sol), and 0.34±0.04mg fibrinogen g(-1) scaffold after washing (Fg-Ads). These materials were implanted in a critical size bone defect in rats. At two months post-implantation the extent of bone regeneration was examined by histology and the systemic immune response triggered was evaluated by determining the percentages of myeloid cells, T and B lymphocytes in the draining lymph nodes. The results obtained indicate that the fibrinogen incorporation strategy conditioned the osteogenic capacity of biomaterials. Fg-Ads scaffolds led to more bone formation, and the presence of Fg stimulated angiogenesis. Furthermore, animals implanted with Fg-Ads scaffolds showed significant increases in the percentages of B lymphocytes and myeloid cells in the draining lymph nodes, while levels of T lymphocytes were not significantly different. Finally, a significant increase in TGF-ß1 was detected in the plasma of animals implanted with Fg-Ads. Taken together the results presented suggest a potential correlation between the elicited immune response and biomaterial osteogenic performance.


Subject(s)
Biocompatible Materials/adverse effects , Bone Regeneration/immunology , Fibrinogen/administration & dosage , Fibrinogen/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/prevention & control , Tissue Scaffolds/adverse effects , Adaptation, Physiological/drug effects , Adaptation, Physiological/immunology , Adsorption , Animals , Bone Regeneration/drug effects , Chitosan/chemistry , Drug Implants/administration & dosage , Equipment Design , Equipment Failure Analysis , Fibrinogen/chemistry , Immunity, Innate/drug effects , Immunity, Innate/immunology , Immunologic Factors , Male , Materials Testing , Rats , Rats, Wistar , Statistics as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...