Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 940966, 2022.
Article in English | MEDLINE | ID: mdl-36275031

ABSTRACT

Leptospirosis is a neglected disease of man and animals that affects nearly half a million people annually and causes considerable economic losses. Current human vaccines are inactivated whole-cell preparations (bacterins) of Leptospira spp. that provide strong homologous protection yet fail to induce a cross-protective immune response. Yearly boosters are required, and serious side-effects are frequently reported so the vaccine is licensed for use in humans in only a handful of countries. Novel universal vaccines require identification of conserved surface-exposed epitopes of leptospiral antigens. Outer membrane ß-barrel proteins (ßb-OMPs) meet these requirements and have been successfully used as vaccines for other diseases. We report the evaluation of 22 constructs containing protein fragments from 33 leptospiral ßb-OMPs, previously identified by reverse and structural vaccinology and cell-surface immunoprecipitation. Three-dimensional structures for each leptospiral ßb-OMP were predicted by I-TASSER. The surface-exposed epitopes were predicted using NetMHCII 2.2 and BepiPred 2.0. Recombinant constructs containing regions from one or more ßb-OMPs were cloned and expressed in Escherichia coli. IMAC-purified recombinant proteins were adsorbed to an aluminium hydroxide adjuvant to produce the vaccine formulations. Hamsters (4-6 weeks old) were vaccinated with 2 doses containing 50 - 125 µg of recombinant protein, with a 14-day interval between doses. Immunoprotection was evaluated in the hamster model of leptospirosis against a homologous challenge (10 - 20× ED50) with L. interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain Fiocruz L1-130. Of the vaccine formulations, 20/22 were immunogenic and induced significant humoral immune responses (IgG) prior to challenge. Four constructs induced significant protection (100%, P < 0.001) and sterilizing immunity in two independent experiments, however, this was not reproducible in subsequent evaluations (0 - 33.3% protection, P > 0.05). The lack of reproducibility seen in these challenge experiments and in other reports in the literature, together with the lack of immune correlates and commercially available reagents to characterize the immune response, suggest that the hamster may not be the ideal model for evaluation of leptospirosis vaccines and highlight the need for evaluation of alternative models, such as the mouse.


Subject(s)
Leptospira , Leptospirosis , Cricetinae , Humans , Mice , Animals , Aluminum Hydroxide , Reproducibility of Results , Leptospirosis/prevention & control , Bacterial Vaccines , Antigens, Bacterial/genetics , Recombinant Proteins , Escherichia coli , Immunoglobulin G , Epitopes
2.
Expert Opin Drug Discov ; 15(2): 179-188, 2020 02.
Article in English | MEDLINE | ID: mdl-31777290

ABSTRACT

Introduction: It's been 20 years since the first report of a recombinant vaccine that protected against leptospirosis. Since then, numerous recombinant vaccines have been evaluated; however, no recombinant vaccine candidate has advanced to clinical trials. With the ever-increasing burden of leptospirosis, there is an urgent need for a universal vaccine against leptospirosis.Areas covered: This review covers the most promising vaccine candidates that induced significant, reproducible, protection and how advances in the field of bioinformatics has led to the discovery of hundreds of novel protein targets. The authors also discuss the most recent findings regarding the innate immune response and host-pathogen interactions and their impact on the discovery of novel vaccine candidates. In addition, the authors have identified what they believe are the most challenging problems for the discovery and development of a universal vaccine and their potential solutions.Expert opinion: A universal vaccine for leptospirosis will likely only be achieved using a recombinant vaccine as the bacterins are of limited use due to the lack of a cross-protective immune response. Although there are hundreds of novel targets, due to the lack of immune correlates and the need for more research into the basic microbiology of Leptospira spp., a universal vaccine is 10-15 years away.


Subject(s)
Bacterial Vaccines/administration & dosage , Leptospirosis/prevention & control , Animals , Bacterial Vaccines/immunology , Computational Biology , Humans , Immunity, Innate , Leptospira/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...