Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(21)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683835

ABSTRACT

Plant-based compounds are an option to explore and perhaps overcome the limitations of current antitumor treatments. Annona coriacea Mart. is a plant with a broad spectrum of biological activities, but its antitumor activity is still unclear. The purpose of our study was to determine the effects of A. coriacea fractions on a panel of cervical cancer cell lines and a normal keratinocyte cell line. The antitumor effect was investigated in vitro by viability assays, cell cycle, apoptosis, migration, and invasion assays. Intracellular signaling was assessed by Western blot, and major compounds were identified by mass spectrometry. All fractions exhibited a cytotoxic effect on cisplatin-resistant cell lines, SiHa and HeLa. C3 and C5 were significantly more cytotoxic and selective than cisplatin in SiHa and Hela cells. However, in CaSki, a cisplatin-sensitive cell line, the compounds did not demonstrate higher cytotoxicity when compared with cisplatin. Alkaloids and acetogenins were the main compounds identified in the fractions. These fractions also markedly decreased cell proliferation with p21 increase and cell cycle arrest in G2/M. These effects were accompanied by an increase of H2AX phosphorylation levels and DNA damage index. In addition, fractions C3 and C5 promoted p62 accumulation and decrease of LC3II, as well as acid vesicle levels, indicating the inhibition of autophagic flow. These findings suggest that A. coriacea fractions may become effective antineoplastic drugs and highlight the autophagy inhibition properties of these fractions in sensitizing cervical cancer cells to treatment.


Subject(s)
Annona/chemistry , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Uterine Cervical Neoplasms/drug therapy , Apoptosis/drug effects , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , Cisplatin/adverse effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Female , HeLa Cells , Humans , Plant Extracts/chemistry , Signal Transduction/drug effects
2.
Article in English | MEDLINE | ID: mdl-29307373

ABSTRACT

Theonella sp is an important source of biologically-active 3-alkylpyridine alkaloids (3-APAs) that has shown a wide variety of promising biological effects. In the present work, two new 3-APAs analogues were synthesized based on molecular modeling studies to act as potential antimalarial agents. These theoneladin C analogues, containing the thiocyanate group in their chemical structures, were synthesized and evaluated against Plasmodium falciparum (IC50 values ranging from 2.3 to 5.5µM). The structural and energetic analysis demonstrated a high chemical affinity of the two analogues for their target, the heme group. However, despite the good antimalarial activity, the compounds exhibited high cytotoxicity and a lack of selectivity for human cell lines. These findings prompted us to evaluate the cytotoxicity of these compounds against human cancer cell lines. In order to better understand the mechanisms responsible for the toxicity, a variety of genotoxicity assays were performed in vitro. One of the compounds assayed presented an interesting selectivity and high toxicity to the human colon cancer cell line RKO-AS45-1. In addition, the results of the micronucleus assay, comet assay, Ames assay and annexin-V/propidium iodide staining showed that the synthetic alkaloids were able to induce chromosomal mis-segregation and trigger cell death by apoptosis. These results demonstrate that the compounds assessed herein may be promising prototypes of anticancer chemotherapeutic agents.


Subject(s)
Alkaloids/pharmacology , Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Pyridines/pharmacology , Theonella/chemistry , Alkaloids/chemical synthesis , Alkaloids/chemistry , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Comet Assay , Humans , Inhibitory Concentration 50 , Micronucleus Tests , Models, Molecular , Plasmodium falciparum/drug effects , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...