Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Proteomics ; 223: 103822, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32422275

ABSTRACT

The unicellular protists of the group Kinetoplastida include the genera Leishmania and Trypanosoma, which are pathogens of invertebrate and vertebrate animals. Despite their medical and economical importance, critical aspects of their biology such as specific molecular characteristics of gene expression regulation are just beginning to be deciphered. Gene expression regulation also depends on post-transcriptional processing steps, such as the trans-splicing process. Despite being widely used in trypanosomes, trans-splicing is a rare event in other eukaryotes. We sought to describe the protein composition of spliceosomes in epimastigotes of T. cruzi, the etiological agent of Chagas disease. We used two TAP-tagged proteins to affinity purify spliceosomes and analyzed their composition by mass spectrometry. Among the 115 identified proteins we detected conserved spliceosome components, as Sm and LSm proteins, RNA helicases, U2- and U5-snRNP specific proteins. Importantly, by comparing our data with proteomic data of human and T. brucei spliceosome complexes, we observed a core group of proteins common to all spliceosomes. By using amino acid sequence comparisons, we identified RNA-associated proteins that might be involved with splicing regulation in T. cruzi, namely the orthologous of WDR33, PABPCL1 and three different HNRNPs. Data are available via ProteomeXchange with identifier PXD018776.


Subject(s)
Spliceosomes , Trypanosoma cruzi , Amino Acid Sequence , Animals , Humans , Proteomics , RNA Splicing , Spliceosomes/metabolism , Trypanosoma cruzi/genetics
2.
J Proteomics, v. 223, 103822, jul. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3045

ABSTRACT

The unicellular protists of the group Kinetoplastida include the genera Leishmania and Trypanosoma, which are pathogens of invertebrate and vertebrate animals. Despite their medical and economical importance, critical aspects of their biology such as specific molecular characteristics of gene expression regulation are just beginning to be deciphered. Gene expression regulation also depends on post-transcriptional processing steps, such as the trans-splicing process. Despite being widely used in trypanosomes, trans-splicing is a rare event in other eukaryotes. We sought to describe the protein composition of spliceosomes in epimastigotes of T. cruzi, the etiological agent of Chagas disease. We used two TAP-tagged proteins to affinity purify spliceosomes and analyzed their composition by mass spectrometry. Among the 115 identified proteins we detected conserved spliceosome components, as Sm and LSm proteins, RNA helicases, U2- and U5-snRNP specific proteins. Importantly, by comparing our data with proteomic data of human and T. brucei spliceosome complexes, we observed a core group of proteins common to all spliceosomes. By using amino acid sequence comparisons, we identified RNA-associated proteins that might be involved with splicing regulation in T. cruzi, namely the orthologous of WDR33, PABPCL1 and three different HNRNPs. Data are available via ProteomeXchange with identifier PXD018776.

3.
J. Proteomics ; 223: 103822, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17685

ABSTRACT

The unicellular protists of the group Kinetoplastida include the genera Leishmania and Trypanosoma, which are pathogens of invertebrate and vertebrate animals. Despite their medical and economical importance, critical aspects of their biology such as specific molecular characteristics of gene expression regulation are just beginning to be deciphered. Gene expression regulation also depends on post-transcriptional processing steps, such as the trans-splicing process. Despite being widely used in trypanosomes, trans-splicing is a rare event in other eukaryotes. We sought to describe the protein composition of spliceosomes in epimastigotes of T. cruzi, the etiological agent of Chagas disease. We used two TAP-tagged proteins to affinity purify spliceosomes and analyzed their composition by mass spectrometry. Among the 115 identified proteins we detected conserved spliceosome components, as Sm and LSm proteins, RNA helicases, U2- and U5-snRNP specific proteins. Importantly, by comparing our data with proteomic data of human and T. brucei spliceosome complexes, we observed a core group of proteins common to all spliceosomes. By using amino acid sequence comparisons, we identified RNA-associated proteins that might be involved with splicing regulation in T. cruzi, namely the orthologous of WDR33, PABPCL1 and three different HNRNPs. Data are available via ProteomeXchange with identifier PXD018776.

4.
PLoS One ; 9(2): e89138, 2014.
Article in English | MEDLINE | ID: mdl-24558481

ABSTRACT

RRP6 is a 3'-5' exoribonuclease associated to the eukaryotic exosome, a multiprotein complex essential for various RNA processing and degradation pathways. In Trypanosoma brucei, RRP6 associates with the exosome in stoichiometric amounts and was localized in both cytoplasm and nucleus, in contrast to yeast Rrp6 which is exclusively nuclear. Here we report the biochemical and structural characterization of T. brucei RRP6 (TbRRP6) and its interaction with the so-called T. brucei Exosome Associated Protein 3 (TbEAP3), a potential orthologue of the yeast Rrp6 interacting protein, Rrp47. Recombinant TbEAP3 is a thermo stable homodimer in solution, however it forms a heterodimeric complex with TbRRP6 with 1∶1 stoichiometry. The crystallographic structure of the TbRRP6 catalytic core exposes for the first time the native catalytic site of this RNase and also reveals a disulfide bond linking two helices of the HRDC domain. RNA degradation assays show the distributive exoribonuclease activity of TbRRP6 and novel findings regarding the structural range of its RNA substrates. TbRRP6 was able to degrade single and double-stranded RNAs and also RNA substrates containing stem-loops including those with 3' stem-loop lacking single-stranded extensions. Finally, association with TbEAP3 did not significantly interfere with the TbRRP6 catalytic activity in vitro.


Subject(s)
Models, Molecular , Protozoan Proteins/chemistry , Trypanosoma brucei brucei/chemistry , Base Sequence , Chromatography, Gel , Circular Dichroism , Cloning, Molecular , Electrophoretic Mobility Shift Assay , Mass Spectrometry , Molecular Sequence Data , Mutagenesis, Site-Directed , Oligonucleotides/genetics , Protein Conformation , Protozoan Proteins/genetics , Sequence Alignment
5.
J Biol Chem ; 286(29): 26148-57, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21632538

ABSTRACT

Winged-helix transcriptional factors play important roles in the control of gene expression in many organisms. In the plant pathogens Xylella fastidiosa and Agrobacterium tumefaciens, the winged-helix protein BigR, a member of the ArsR/SmtB family of metal sensors, regulates transcription of the bigR operon involved in bacterial biofilm growth. Previous studies showed that BigR represses transcription of its own operon through the occupation of the RNA polymerase-binding site; however, the signals that modulate its activity and the biological function of its operon are still poorly understood. Here we show that although BigR is a homodimer similar to metal sensors, it functions as a novel redox switch that derepresses transcription upon oxidation. Crystal structures of reduced and oxidized BigR reveal that formation of a disulfide bridge involving two critical cysteines induces conformational changes in the dimer that remarkably alter the topography of the winged-helix DNA-binding interface, precluding DNA binding. This structural mechanism of DNA association-dissociation is novel among winged-helix factors. Moreover, we demonstrate that the bigR operon is required for hydrogen sulfide detoxification through the action of a sulfur dioxygenase (Blh) and sulfite exporter. As hydrogen sulfide strongly inhibits cytochrome c oxidase, it must be eliminated to allow aerobic growth under low oxygen tension, an environmental condition found in bacterial biofilms, xylem vessels, and root tissues. Accordingly, we show that the bigR operon is critical to sustain bacterial growth under hypoxia. These results suggest that BigR integrates the transcriptional regulation of a sulfur oxidation pathway to an oxidative signal through a thiol-based redox switch.


Subject(s)
Agrobacterium tumefaciens/metabolism , Bacterial Proteins/metabolism , Hydrogen Sulfide/metabolism , Oxygen/metabolism , Plants/microbiology , Transcription Factors/metabolism , Xylella/metabolism , Agrobacterium tumefaciens/growth & development , Agrobacterium tumefaciens/physiology , Animals , Bacterial Proteins/chemistry , Biofilms/growth & development , Conserved Sequence , Cysteine , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Dioxygenases/metabolism , Disulfides/chemistry , Hydrogen Sulfide/toxicity , Mice , Mitochondrial Proteins/metabolism , Models, Molecular , Operon/genetics , Oxidation-Reduction , Protein Structure, Secondary , Transcription Factors/chemistry , Transcription, Genetic , Xylella/growth & development , Xylella/physiology
6.
Mol. cell. neurosci ; 44(4): 353-361, Aug.2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1064787

ABSTRACT

Ndel1 plays multiple roles in neuronal development but it is unknown whether its reported cysteine protease activity is important for these processes. Ndel1 is known to be critical for neurite outgrowth in PC12 cells where it works co-operatively in a complex with DISC1 to allow normal neuritogenesis. Through an initial interest in understanding the regulation of the expression of Ndel1 during neuronal differentiation, we have been able to show that Ndel1 expression and enzyme activity is up-regulated during neurite outgrowth in PC12 cells induced to neural differentiation. Heterologous expression of wild-type Ndel1 (Ndel1WT) in PC12 cells increases the percentage of cells bearing neurites in contrast to the catalytically dead mutant, Ndel1C273A, which caused a decrease. Furthermore depletion of endogenous Ndel1 by RNAi decreased neurite outgrowth, which was rescued by transfection of the enzymatically active Ndel1WT, but not by the Ndel1C273A mutant. Together these data support the notion that the endooligopeptidase activity of Ndel1 plays a crucial role in the differentiation process of PC12 cells to neurons. Genetic data and protein interaction with DISC1 might suggest a role for Ndel1 in neuropsychiatirc conditions.


Subject(s)
Humans , Cell Differentiation , Gene Expression Regulation/genetics , Neurites/genetics , Neurites/prevention & control , Transfection
7.
Mol Cell Neurosci ; 44(4): 353-61, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20462516

ABSTRACT

Ndel1 plays multiple roles in neuronal development but it is unknown whether its reported cysteine protease activity is important for these processes. Ndel1 is known to be critical for neurite outgrowth in PC12 cells where it works co-operatively in a complex with DISC1 to allow normal neuritogenesis. Through an initial interest in understanding the regulation of the expression of Ndel1 during neuronal differentiation, we have been able to show that Ndel1 expression and enzyme activity is up-regulated during neurite outgrowth in PC12 cells induced to neural differentiation. Heterologous expression of wild-type Ndel1 (Ndel1(WT)) in PC12 cells increases the percentage of cells bearing neurites in contrast to the catalytically dead mutant, Ndel1(C273A), which caused a decrease. Furthermore depletion of endogenous Ndel1 by RNAi decreased neurite outgrowth, which was rescued by transfection of the enzymatically active Ndel1(WT), but not by the Ndel1(C273A) mutant. Together these data support the notion that the endooligopeptidase activity of Ndel1 plays a crucial role in the differentiation process of PC12 cells to neurons. Genetic data and protein interaction with DISC1 might suggest a role for Ndel1 in neuropsychiatirc conditions.


Subject(s)
Carrier Proteins/physiology , Cell Differentiation/physiology , Metalloendopeptidases/physiology , Neurites/physiology , Animals , Mutation , Nerve Tissue Proteins/physiology , Neurons/cytology , PC12 Cells , RNA, Small Interfering , Rats
8.
J Bacteriol ; 189(17): 6185-94, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17586627

ABSTRACT

Xylella fastidiosa is a plant pathogen that colonizes the xylem vessels, causing vascular occlusion due to bacterial biofilm growth. However, little is known about the molecular mechanisms driving biofilm formation in Xylella-plant interactions. Here we show that BigR (for "biofilm growth-associated repressor") is a novel helix-turn-helix repressor that controls the transcription of an operon implicated in biofilm growth. This operon, which encodes BigR, membrane proteins, and an unusual beta-lactamase-like hydrolase (BLH), is restricted to a few plant-associated bacteria, and thus, we sought to understand its regulation and function in X. fastidiosa and Agrobacterium tumefaciens. BigR binds to a palindromic AT-rich element (the BigR box) in the Xylella and Agrobacterium blh promoters and strongly represses the transcription of the operon in these cells. The BigR box overlaps with two alternative -10 regions identified in the blh promoters, and mutations in this box significantly affected transcription, indicating that BigR competes with the RNA polymerase for the same promoter site. Although BigR is similar to members of the ArsR/SmtB family of regulators, our data suggest that, in contrast to the initial prediction, it does not act as a metal sensor. Increased activity of the BigR operon was observed in both Xylella and Agrobacterium biofilms. In addition, an A. tumefaciens bigR mutant showed constitutive expression of operon genes and increased biofilm formation on glass surfaces and tobacco roots, indicating that the operon may play a role in cell adherence or biofilm development.


Subject(s)
Agrobacterium tumefaciens/growth & development , Bacterial Proteins/physiology , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Repressor Proteins/physiology , Xylella/growth & development , Agrobacterium tumefaciens/genetics , Amino Acid Sequence , Artificial Gene Fusion , Binding Sites/genetics , DNA Footprinting , Electrophoretic Mobility Shift Assay , Genes, Reporter , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Helix-Turn-Helix Motifs , Microscopy, Fluorescence , Molecular Sequence Data , Mutagenesis, Insertional , Mutation , Operon , Promoter Regions, Genetic , Protein Binding , Nicotiana/microbiology , Transcription, Genetic , Xylella/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...