Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Med Genomics ; 11(1): 122, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30563523

ABSTRACT

BACKGROUND: Chromosome translocations are a hallmark of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Additional genomic aberrations are also crucial in both BCP-ALL leukemogenesis and treatment management. Herein, we report the phenotypic and molecular cytogenetic characterization of an extremely rare case of BCP-ALL harboring two concomitant leukemia-associated chromosome translocations: t(1;19)(q23;q13.3) and t(9;17)(p13;q11.2). Of note, we described a new rearrangement between exon 6 of PAX5 and a 17q11.2 region, where intron 3 of SPECC1 is located. This rearrangement seems to disrupt PAX5 similarly to a PAX5 deletion. Furthermore, a distinct karyotype between diagnosis and relapse samples was observed, disclosing a complex clonal evolution during leukemia progression. CASE PRESENTATION: A 16-year-old boy was admitted febrile with abdominal and joint pain. At clinical investigation, he presented with anemia, splenomegaly, low white blood cell count and 92% lymphoblast. He was diagnosed with pre-B ALL and treated according to high risk GBTLI-ALL2009. Twelve months after complete remission, he developed a relapse in consequence of a high central nervous system and bone marrow infiltration, and unfortunately died. CONCLUSIONS: To our knowledge, this is the first report of a rearrangement between PAX5 and SPECC1. The presence of TCF3-PBX1 and PAX5-rearrangement at diagnosis and relapse indicates that both might have participated in the malignant transformation disease maintenance and dismal outcome.


Subject(s)
Oncogene Proteins, Fusion/genetics , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Adolescent , Base Sequence , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , DNA Copy Number Variations , DNA Mutational Analysis , Gene Rearrangement , Humans , Karyotyping , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recurrence , Translocation, Genetic
2.
Oncotarget ; 7(33): 53064-53073, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27419633

ABSTRACT

IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in childhood B-cell precursor acute lymphoblastic leukemia. Because of its clinical importance, we previously mapped breakpoints of intragenic deletions and developed a multiplex PCR assay to detect recurrent intragenic ΔIKZF1. Since the multiplex PCR was not able to detect complete deletions (IKZF1 Δ1-8), which account for ~30% of all ΔIKZF1, we aimed at investigating the genomic scenery of IKZF1 Δ1-8. Six samples of cases with IKZF1 Δ1-8 were analyzed by microarray assay, which identified monosomy 7, isochromosome 7q, and large interstitial deletions presenting breakpoints within COBL gene. Then, we established a multiplex ligation-probe amplification (MLPA) assay and screened copy number alterations within chromosome 7 in 43 diagnostic samples with IKZF1 Δ1-8. Our results revealed that monosomy and large interstitial deletions within chromosome 7 are the main causes of IKZF1 Δ1-8. Detailed analysis using long distance inverse PCR showed that six patients (16%) had large interstitial deletions starting within intronic regions of COBL at diagnosis, which is ~611 Kb downstream of IKZF1, suggesting that COBL is a hotspot for ΔIKZF1. We also investigated a series of 25 intragenic deletions (Δ2-8, Δ3-8 or Δ4-8) and 24 relapsed samples, and found one IKZF1-COBL tail-to-tail fusion, thus supporting that COBL is a novel hotspot for ΔIKZF1. Finally, using RIC score methodology, we show that breakpoint sequences of IKZF1 Δ1-8 are not analog to RAG-recognition sites, suggesting a different mechanism of error promotion than that suggested for intragenic ΔIKZF1.


Subject(s)
Gene Deletion , Ikaros Transcription Factor/genetics , Microfilament Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Amino Acid Sequence , Base Sequence , Child, Preschool , Chromosome Breakpoints , Chromosome Deletion , Chromosomes, Human, Pair 7/genetics , DNA Copy Number Variations , Female , Humans , Infant , Isochromosomes/genetics , Male , Nucleic Acid Amplification Techniques/methods , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
3.
Cancer Genet ; 208(10): 492-501, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26277549

ABSTRACT

Copy number alterations (CNAs) in genes committed to B-cell precursors have been associated with poor survival in subgroups of patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We investigated submicroscopic alterations in a series of 274 Brazilian children with BCP-ALL by multiplex ligation-dependent probe amplification and evaluated their correlation with clinical and laboratory features. The relevance of overlapping CNA abnormalities was also explored. Deletions/amplifications in at least one gene were identified in 83% of the total series. In children older than 2 years, there was a predominance of CNAs involving deletions in IKZF1, CDKN2A, and CDKN2B, whereas the pseudoautosomal region 1 (PAR1) had deletions that were found more frequently in infants (P <0.05). Based on the cytogenetic subgroups, favorable cytogenetic subgroups showed more deletions than other subgroups that occurred simultaneously, specifically ETV6 deletions (P <0.05). TCF3-PBX1 was frequently deleted in RB1, and an absence of deletions was observed in IKZF1 and genes localized to the PAR1 region. The results corroborate with previous genome-wide studies and aggregate new markers for risk stratification of BCP-ALL in Brazil.


Subject(s)
Gene Dosage , Genetic Markers/genetics , Multiplex Polymerase Chain Reaction/methods , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Brazil , Child , Child, Preschool , Cytogenetic Analysis/methods , Gene Amplification , Gene Deletion , Humans , Infant , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
4.
Mol Cytogenet ; 8: 35, 2015.
Article in English | MEDLINE | ID: mdl-26060508

ABSTRACT

BACKGROUND: An intrachromosomal amplification of chromosome 21 (iAMP21) defines a unique subgroup of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The finding of three or more extra copies of the RUNX1 gene by fluorescence in situ hybridization (FISH) is internationally used to define an iAMP21. Genomic profiling of chromosome 21 has been suggested for assisting diagnostic case identification. Due to limitations of comparative genomic hybridization, in terms of a routine application as first line-screening tests we evaluated the multiplex ligation-dependent probe amplification (MLPA) SALSA P327_A1 and P327_B1 probe sets for detecting chromosome 21 copy number alterations in Brazilian childhood BCP-ALL. RESULTS: In 74 out of 368 patients gain of genetic material was detected. For data confirmation RUNX1 directed FISH was performed. Cells with ≥5 RUNX1 signals (n = 9) were considered as "true iAMP21" while <5 RUNX1 signals (n = 41) were counted as evidence for additional copies of intact chromosomes 21. All patients with an iAMP21 had high MLPA peak ratios (≥1.8), while the majority of patients with <5 RUNX1 presented low MLPA peak ratios (<1.8). Observed differences gained statistical strength by comparing probes located within the common region of amplification. Next, a principal component analysis was performed in order to illustrate distribution of cases according to their MLPA peak profile in two dimensions. Cases with an iAMP21 mostly clustered together, however additional cases with <5 RUNX1 signals or no available FISH data located in proximity. CONCLUSIONS: MLPA qualified as a high throughput technique that could be employed in future studies for a critical comparison with data obtained by FISH, especially in cases where metaphase nuclei are not available. Taking submicroscopic aberrations into account examined by MLPA, cases exhibiting an "iAMP21 like" peak ratio profile but <5 RUNX1 signals should be considered as candidates for this chromosomal abnormality.

5.
BMC Cancer ; 14: 127, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24564228

ABSTRACT

BACKGROUND: Acute leukemia in early age (EAL) is characterized by acquired genetic alterations such as MLL rearrangements (MLL-r). The aim of this case-controlled study was to investigate whether single nucleotide polymorphisms (SNPs) of IKZF1, ARID5B, and CEBPE could be related to the onset of EAL cases (<24 months-old at diagnosis). METHODS: The SNPs (IKZF1 rs11978267, ARID5B rs10821936 and rs10994982, CEBPE rs2239633) were genotyped in 265 cases [169 acute lymphoblastic leukemia (ALL) and 96 acute myeloid leukaemia (AML)] and 505 controls by Taqman allelic discrimination assay. Logistic regression was used to evaluate the association between SNPs of cases and controls, adjusted on skin color and/or age. The risk was determined by calculating odds ratios (ORs) with 95% confidence interval (CI). RESULTS: Children with the IKZF1 SNP had an increased risk of developing MLL-germline ALL in white children. The heterozygous/mutant genotype in ARID5B rs10994982 significantly increased the risk for MLL-germline leukemia in white and non-white children (OR 2.60, 95% CI: 1.09-6.18 and OR 3.55, 95% CI: 1.57-8.68, respectively). The heterozygous genotype in ARID5B rs10821936 increased the risk for MLL-r leukemia in both white and non-white (OR 2.06, 95% CI: 1.12-3.79 and OR 2.36, 95% CI: 1.09-5.10, respectively). Furthermore, ARID5B rs10821936 conferred increased risk for MLL-MLLT3 positive cases (OR 7.10, 95% CI:1.54-32.68). Our data do not show evidence that CEBPE rs2239633 confers increased genetic susceptibility to EAL. CONCLUSIONS: IKZF1 and CEBPE variants seem to play a minor role in genetic susceptibility to EAL, while ARID5B rs10821936 increased the risk of MLL-MLLT3. This result shows that genetic susceptibility could be associated with the differences regarding MLL breakpoints and partner genes.


Subject(s)
DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Translocation, Genetic , Age Factors , Brazil , Case-Control Studies , Child , Child, Preschool , Genotype , Humans , Leukemia/diagnosis , Odds Ratio , Oncogene Proteins, Fusion/genetics
6.
BMC Cancer ; 14: 133, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24571676

ABSTRACT

BACKGROUND: Deregulation of the MAPK genes signalling caused by somatic mutations have been implied in leukaemia pathogenesis, including RAS mutation (RASmut) in acute myeloid leukaemia (AML), which has been associated with intra-uterine chemical exposures. A case-case study was conducted in order to explore maternal and child exposures to tobacco smoking associations with early age leukaemia (EAL). METHODS: Covariables of reference were MLL rearrangements (MLL-r), RASmut and NQO1 rs1800566 (C609T). Samples from 150 acute lymphoblastic leukaemia (ALL) and 85 AML were included. Maternal exposures were assessed using a structured questionnaire with demographic, personal habits and residence history information. Restriction fragment length polymorphism and denaturing high performance liquid chromatography were used to screen FLT3, KRAS, and NRAS mutations; direct sequencing was performed to validate the results. NQO1 polymorphism was detected by real-time allelic discrimination technique. RESULTS: Overall, RASmut were detected in 28.7% of EAL cases; BRAFmut was found only in one AML patient. Higher rate of KRASmut was found in ALL (30.3%) compared to AML (20.8%) with MLL-r; RASmut showed an association with second-hand tobacco smoking exposures (OR, 3.06, 95% CI, 1.03-9.07). A considerable increased risk for EAL with the combination of RASmut and NQO1 609CT (OR, 4.24, 95% CI, 1.24-14.50) was observed. CONCLUSIONS: Our data demonstrated the increased risk association between maternal smoking and EAL with MLL-r. Additionally, suggests that children second-hand tobacco exposures are associated with increased risk of EAL with RASmut modulated by NQO1 rs1800566 (C609T).


Subject(s)
Genes, ras , Leukemia/etiology , Mutation , NAD(P)H Dehydrogenase (Quinone)/genetics , Tobacco Smoke Pollution/adverse effects , Adolescent , Adult , Brazil , Case-Control Studies , Child , Child, Preschool , Chromosome Aberrations , Female , Humans , Leukemia/diagnosis , Leukemia/genetics , Leukemia/mortality , Male , Maternal Exposure , Mitogen-Activated Protein Kinases/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Odds Ratio , Pregnancy , Prognosis , Translocation, Genetic , Young Adult
7.
Leuk Lymphoma ; 55(7): 1501-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24067137

ABSTRACT

We analyzed mutations in four genes (FLT3, KRAS/NRAS and PTPN11) that might disrupt the RAS/mitogen activated protein kinase (MAPKinase) signaling pathway, to evaluate their prognostic value in children younger than 16 years old with B-cell precursor acute lymphoblastic leukemia (Bcp-ALL). The overall survival (OS) was determined with the Kaplan-Meier method. MAPKinase genes were mutated in 25.4% and 20.1% of childhood and infant Bcp-ALL, respectively. Children with hyperdiploidy were more prone to harboring a MAPKinase gene mutation (odds ratio [OR] 3.18; 95% confidence interval [CI] 1.07-9.49). The mean OS of all cases was 54.0 months. FLT3 and PTPN11 mutations had no impact on OS. K/NRAS mutations were strongly associated with MLL-AFF1 (OR 5.78; 95% CI 1.00-33.24), and conferred poorer OS (p = 0.034) in univariate analysis.


Subject(s)
Genes, ras , Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , fms-Like Tyrosine Kinase 3/genetics , Brazil , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Odds Ratio , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis
8.
Am J Blood Res ; 3(2): 165-73, 2013.
Article in English | MEDLINE | ID: mdl-23675566

ABSTRACT

Chromosomal translocations resulting in chimeric fusion genes are prototypic for pediatric leukemia patients. The most known fusions are ETV6-RUNX1 or BCR-ABL1 in B-cell progenitor (BCP)-ALL, and rearrangements of MLL in pediatric ALL and AML. Genome-wide sequencing projects have revealed additional, recurrent gene mutations in B cell malignancies. One of these mutations comprises the IKZF1 gene, encoding the IKAROS transcription factor which is one of the essential transcription factors driving lymphoid development. IKZF1 deletions were first identified by SNP arrays in ALL patients, and later identified with a high prevalence in BCR-ABL1(+) patients. IKZF1 deletions turned out to be an independent prognostic marker associated with a poor outcome. Here, we characterized IKZF1 deletions in pediatric BCP-ALL patients by combining MLPA mapping experiments with long distance inverse PCR. The aim of our study was also to compare existing methods with our approach. Our attempt confirmed many of the existing data but revealed a more complex pattern of recombination sites, including a total of 4 recombination hotspots. This extended knowledge was translated into a novel, multiplex PCR assay that allows to perform IKZF1 deletion analyses by using a 2-tube PCR approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...