Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Chromatogr ; 37(11): e5723, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37581307

ABSTRACT

The aim of this study is to demonstrate the stability-indicating capacity of an analytical method for Eugenia uniflora, enhance understanding of the stability of myricitrin, and assess the effect of degradation of spray-dried extract (SDE) on antioxidant and antifungal activities. Validation of the stability-indicating method was carried out through a forced degradation study of SDE and standard myricitrin. The antioxidant and antifungal activities of SDE were evaluated both before and after degradation. The quantification method described was found to be both accurate and precise in measuring myricitrin levels in SDE from E. uniflora, with excellent selectivity that confirmed its stability-indicating capability. The forced degradation study revealed that the marker myricitrin is sensitive to hydrolysis, but generally stable under other stress conditions. By contrast, the standard myricitrin displayed greater susceptibility to degradation under forced degradation conditions. Analysis of the antioxidant activity of SDE before and after degradation showed a negative impact in this activity due to degradation, while no significant effect was observed on antifungal activity. The method described can be a valuable tool in the quality control of E. uniflora, and the findings can assist in determining the optimal conditions and storage of products derived from this species.

2.
J Ethnopharmacol ; 298: 115668, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36038093

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Eugenia uniflora Linn (Myrtaceae) is the native species of Brazil. The leaves of this species are used in folk medicine to treat different inflammatory and gastrointestinal disorders. However, research on the safety of using E. uniflora leaves has been poorly explored. AIM OF THE STUDY: This approach aims to investigate the phytochemical composition as well as the acute, subacute toxicity, and in vivo genotoxic profile of the aqueous extract of E. uniflora leaves. MATERIALS AND METHODS: The chemical composition of E. uniflora leaf extract was determined by Fingerprint by High-Performance Thin Layer and High-Performance Liquid Chromatography. The acute toxicity in vivo was evaluated for 14 days after the administration of E. uniflora leaves extract (2000 mg/kg). For the evaluation of subacute toxicity, mice were daily treated for 28 days with E. uniflora extract (250, 500, or 1000 mg/kg). Signs of behavioral toxicity and biochemical and hematological alterations, including the multiple organ toxicities were investigated. In addition, the micronucleus assay was used to evaluate the in vivo genotoxicity of the leaves extract in murine erythrocytes. RESULTS: The phytochemical analysis showed the majority presence of phenolic compounds (gallic acid, ellagic acid, and myricitrin). Single or repeated doses of the aqueous extract of E. uniflora leaves did not reveal any signs of in vivo toxicity. Daily doses of the extract for 28 days induced a slight reduction in cholesterol and triglyceride levels. Furthermore, E. uniflora leaves extract (1000-2000 mg/kg) showed no genetic damage in the micronucleus assay, indicating the absence of genotoxicity of the herbal species. CONCLUSION: The aqueous extract of E. uniflora leaves showed a predominance of phenolic compounds, with non-toxic and non-genotoxic action in vivo. This approach sheds light on the chemical composition of the leaves of E. uniflora and suggests a high margin of safety in the popular use of the leaves of this plant species.


Subject(s)
Eugenia , Myrtaceae , Animals , Antioxidants/pharmacology , Eugenia/chemistry , Mice , Phytochemicals/analysis , Plant Extracts/pharmacology , Plant Leaves/chemistry
3.
Nat Prod Res ; 36(10): 2559-2564, 2022 May.
Article in English | MEDLINE | ID: mdl-33749459

ABSTRACT

The chemical composition, the antioxidant and antimicrobial potential of crude extract from leaves Cinnamomum verum and their enriched fractions was studied. Phytochemical analyses were performed by TLC and HPLC, and the antioxidant capacity was verified by DPPH• and ABTS•+. The Minimal Inhibitory/Bactericidal Concentration was conducted against twenty-two bacteria to select five strains susceptible to extracts/fractions and resistant to the antibiotics tested. Interference of Ethyl Acetate Fraction (EAF) in resistance to synthetic antibiotic was assayed by modulatory and checkerboard model. The chromatographic data showed phenolic compounds in crude extract, as well the flavonoid enrichment in the EAF. The combination of EAF and synthetic antibiotics (ampicillin, azithromycin, ciprofloxacin, or gentamicin) provides a synergistic effect against multidrug resistant strains). The results are useful to obtain multi-targeting in a single therapy solution, which on antioxidants molecules plant-derivatives can act synergistically in antimicrobial combinations, a valuable aid as bacterial resistance modifying compounds.


Subject(s)
Anti-Infective Agents , Antioxidants , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Bacteria , Cinnamomum zeylanicum , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...