Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805074

ABSTRACT

The role of defects in two-dimensional semiconductors and how they affect the intrinsic properties of these materials have been a widely researched topic over the past few decades. Optical characterization techniques such as photoluminescence and Raman spectroscopies are important tools to probe the physical properties of semiconductors and the impact of defects. However, confocal optical techniques present a spatial resolution limitation lying in a µm-scale, which can be overcome by the use of near-field optical measurements. Here, we use tip-enhanced photoluminescence and Raman spectroscopies to unveil the nanoscale optical properties of grown MoS2 monolayers, revealing that the impact of doping and strain can be disentangled by the combination of both techniques. A noticeable enhancement of the exciton peak intensity corresponding to trion emission quenching is observed at narrow regions down to a width of 47 nm at grain boundaries related to doping effects. Besides, localized strain fields inside the sample lead to non-uniformities in the intensity and energy position of photoluminescence peaks. Finally, two distinct MoS2 samples present different nano-optical responses at their edges associated with opposite strains. The edge of the first sample shows a photoluminescence intensity enhancement and energy blueshift corresponding to a frequency blueshift for E2g and 2LA Raman modes. In contrast, the other sample displays a photoluminescence energy redshift and frequency red shifts for E2g and 2LA Raman modes at their edges. Our work highlights the potential of combining tip-enhanced photoluminescence and Raman spectroscopies to probe localized strain fields and doping effects related to defects in two-dimensional materials.

2.
Beilstein J Nanotechnol ; 14: 535-543, 2023.
Article in English | MEDLINE | ID: mdl-37152475

ABSTRACT

In this work, a conductive ink based on microfibrillated cellulose (MFC) and multiwalled carbon nanotubes (MWCNTs) was used to produce transducers for rapid liquid identification. The transducers are simple resistive devices that can be easily fabricated by scalable printing techniques. We monitored the electrical response due to the interaction between a given liquid with the carbon nanotube-cellulose film over time. Using principal component analysis of the electrical response, we were able to extract robust data to differentiate between the liquids. We show that the proposed liquid sensor can classify different liquids, including organic solvents (acetone, chloroform, and different alcohols) and is also able to differentiate low concentrations of glycerin in water (10-100 ppm). We have also investigated the influence of two important properties of the liquids, namely dielectric constant and vapor pressure, on the transduction of the MFC-MWCNT sensors. These results were corroborated by independent heat flow measurements (thermogravimetric analysis). The proposed MFC-MWCNT sensor platform may help paving the way to rapid, inexpensive, and robust liquid analysis and identification.

3.
ACS Omega ; 7(11): 9388-9396, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35356695

ABSTRACT

Molybdenum disulfide (MoS2) is attractive for use in next-generation nanoelectronic devices and exhibits great potential for humidity sensing applications. Herein, MoS2 ink was successfully prepared via a simple exfoliation method by sonication. The structural and surface morphology of a deposited ink film was analyzed by scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). The aerosol-printed MoS2 ink sensor has high sensitivity, with a conductivity increase by 6 orders of magnitude upon relative humidity increase from 10 to 95% at room temperature. The sensor also has fast response/recovery times and excellent repeatability. Possible mechanisms for the water-induced conductivity increase are discussed. An analytical model that encompasses two ionic conduction regimes, with a percolation transition to an insulating state below a low humidity threshold, describes the sensor response successfully. In conclusion, our work provides a low-cost and straightforward strategy for fabricating a high-performance humidity sensor and fundamental insights into the sensing mechanism.

4.
Beilstein J Nanotechnol ; 11: 1801-1808, 2020.
Article in English | MEDLINE | ID: mdl-33335824

ABSTRACT

Folds naturally appear on nanometrically thin materials, also called "2D materials", after exfoliation, eventually creating folded edges across the resulting flakes. We investigate the adhesion and flexural properties of single-layered and multilayered 2D materials upon folding in the present work. This is accomplished by measuring and modeling mechanical properties of folded edges, which allows for the experimental determination of the bending stiffness (κ) of multilayered 2D materials as a function of the number of layers (n). In the case of talc, we obtain κ ∝ n 3 for n ≥ 5, indicating no interlayer sliding upon folding, at least in this thickness range. In contrast, tip-enhanced Raman spectroscopy measurements on edges in folded graphene flakes, 14 layers thick, show no significant strain. This indicates that layers in graphene flakes, up to 5 nm thick, can still slip to relieve stress, showing the richness of the effect in 2D systems. The obtained interlayer adhesion energy for graphene (0.25 N/m) and talc (0.62 N/m) is in good agreement with recent experimental results and theoretical predictions. The obtained value for the adhesion energy of graphene on a silicon substrate is also in agreement with previous results.

5.
Nanotechnology ; 31(11): 115704, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-31791016

ABSTRACT

Gypsum is an Earth-abundant mineral with enormous applications in agriculture and civil engineering. Here, we show it is also an excellent height calibration standard alternative for atomic force microscopy (AFM). Using plain water as etchant, gypsum flakes readily review 0.75 nm tall terraces which are easy to image (lateral dimensions from tens to hundreds of nanometers) and robust against time in ambient conditions. Therefore, the present work demonstrates a new height standard alternative which is easily-available for all AFM microscopists around the world.

6.
ACS Nano ; 12(6): 5866-5872, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29787237

ABSTRACT

The ability to create materials with improved properties upon transformation processes applied to conventional materials is the keystone of materials science. Here, hexagonal boron nitride (h-BN), a large-band-gap insulator, is transformed into a conductive two-dimensional (2D) material- bonitrol-that is stable at ambient conditions. The process, which requires compression of at least two h-BN layers and hydroxyl ions, is characterized via scanning probe microscopy experiments and ab initio calculations. This material and its creation mechanism represent an additional strategy for the transformation of known 2D materials into artificial advanced materials with exceptional properties.

7.
Nanoscale ; 7(39): 16175-81, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26381825

ABSTRACT

The charge transfer between neighboring single-walled carbon nanotubes (SWNTs) on a silicon oxide surface was investigated as a function of both the SWNT nature (metallic or semiconducting) and the anode/cathode distance using scanning probe techniques. Two main mechanisms were observed: a direct electron tunneling described by the typical Fowler-Nordheim model, and indirect electron transfer (hopping) mediated by functional groups on the supporting surface. Both mechanisms depend on the SWNT nature and on the anode/cathode separation: direct electron tunneling dominates the charge transfer process for metallic SWNTs, especially for large distances, while both mechanisms compete with each other for semiconducting SWNTs, prevailing one over the other depending on the anode/cathode separation. These mechanisms may significantly influence the design and operation of SWNT-based electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...