Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 947: 174613, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997036

ABSTRACT

This study applies a regional Dynamic Energy Budget (DEB) model, enhanced to include biocalcification processes, to evaluate the carbon capture potential of farmed blue mussels (Mytilus edulis/trossulus) in the Baltic Sea. The research emphasises the long-term capture of carbon associated with shell formation, crucial for mitigating global warming effects. The model was built using a comprehensive pan-Baltic dataset that includes information on mussel growth, filtration and biodeposition rates, and nutrient content. The study also examined salinity, temperature, and chlorophyll a as key environmental factors influencing carbon capture in farmed mussels. Our findings revealed significant spatial and temporal variability in carbon dynamics under current and future environmental conditions. The tested future predictions are grounded in current scientific understanding and projections of climate change effects on the Baltic Sea. Notably, the outer Baltic Sea subbasins exhibited the highest carbon capture capacity with an average of 55 t (in the present scenario) and 65 t (under future environmental conditions) of carbon sequestrated per farm (0.25 ha) over a cultivation cycle - 17 months. Salinity was the main driver of predicted regional changes in carbon capture, while temperature and chlorophyll a had more pronounced local effects. This research advances our understanding of the role low trophic aquaculture plays in mitigating climate change. It highlights the importance of developing location-specific strategies for mussel farming that consider both local and regional environmental conditions. The results contribute to the wider discourse on sustainable aquaculture development and environmental conservation.

2.
Sci Total Environ ; 839: 156230, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35643144

ABSTRACT

Marine eutrophication is a pervasive and growing threat to global sustainability. Macroalgal cultivation is a promising circular economy solution to achieve nutrient reduction and food security. However, the location of production hotspots is not well known. In this paper the production potential of macroalgae of high commercial value was predicted across the Baltic Sea region. In addition, the nutrient limitation within and adjacent to macroalgal farms was investigated to suggest optimal site-specific configuration of farms. The production potential of Saccharina latissima was largely driven by salinity and the highest production yields are expected in the westernmost Baltic Sea areas where salinity is >23. The direct and interactive effects of light availability, temperature, salinity and nutrient concentrations regulated the predicted changes in the production of Ulva intestinalis and Fucus vesiculosus. The western and southern Baltic Sea exhibited the highest farming potential for these species, with promising areas also in the eastern Baltic Sea. Macroalgal farming did not induce significant nutrient limitation. The expected spatial propagation of nutrient limitation caused by macroalgal farming was less than 100-250 m. Higher propagation distances were found in areas of low nutrient and low water exchange (e.g. offshore areas in the Baltic Proper) and smaller distances in areas of high nutrient and high water exchange (e.g. western Baltic Sea and Gulf of Riga). The generated maps provide the most sought-after input to support blue growth initiatives that foster the sustainable development of macroalgal cultivation and reduction of in situ nutrient loads in the Baltic Sea.


Subject(s)
Fucus , Seaweed , Baltic States , Eutrophication , Nutrients , Oceans and Seas , Water
3.
Sci Total Environ ; 838(Pt 4): 156610, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35690216

ABSTRACT

This article presents a novel conceptual blueprint for an 'ideal', i.e., ecologically relevant, microplastic effect study. The blueprint considers how microplastics should be characterized and applied in laboratory experiments, and how biological responses should be measured to assure unbiased data that reliably reflect the effects of microplastics on aquatic biota. This 'ideal' experiment, although practically unachievable, serves as a backdrop to improve specific aspects of experimental research on microplastic effects. In addition, a systematic and quantitative literature review identified and quantified departures of published experiments from the proposed 'ideal' design. These departures are related mainly to the experimental design of microplastic effect studies failing to mimic natural environments, and experiments with limited potential to be scaled-up to ecosystem level. To produce a valid and generalizable assessment of the effect of microplastics on biota, a quantitative meta-analysis was performed that incorporated the departure of studies from the 'ideal' experiment (a measure of experimental quality) and inverse variance (a measure of the study precision) as weighting coefficients. Greater weights were assigned to experiments with higher quality and/or with lower variance in the response variables. This double-weighting captures jointly the technical quality, ecological relevance and precision of estimates provided in each study. The blueprint and associated meta-analysis provide an improved baseline for the design of ecologically relevant and technically sound experiments to understand the effects of microplastics on single species, populations and, ultimately, entire ecosystems.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Plastics/analysis , Water Pollutants, Chemical/analysis
4.
Parasitology ; 148(4): 486-494, 2021 04.
Article in English | MEDLINE | ID: mdl-33213531

ABSTRACT

Trematode prevalence and abundance in hosts are known to be affected by biotic drivers as well as by abiotic drivers. In this study, we used the unique salinity gradient found in the south-western Baltic Sea to: (i) investigate patterns of trematode infections in the first intermediate host, the periwinkle Littorina littorea and in the downstream host, the mussel Mytilus edulis, along a regional salinity gradient (from 13 to 22) and (ii) evaluate the effects of first intermediate host (periwinkle) density, host size and salinity on trematode infections in mussels. Two species dominated the trematode community, Renicola roscovita and Himasthla elongata. Salinity, mussel size and density of infected periwinkles were significantly correlated with R. roscovita, and salinity and density correlated with H. elongata abundance. These results suggest that salinity, first intermediate host density and host size play an important role in determining infection levels in mussels, with salinity being the main major driver. Under expected global change scenarios, the predicted freshening of the Baltic Sea might lead to reduced trematode transmission, which may be further enhanced by a potential decrease in periwinkle density and mussel size.


Subject(s)
Bivalvia/parasitology , Trematoda/growth & development , Animals , Baltic States , Bivalvia/anatomy & histology , Bivalvia/growth & development , North Sea , Salinity , Vinca/growth & development , Vinca/parasitology
5.
Sci Total Environ ; 750: 141296, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33182202

ABSTRACT

Marine mammals and the ecological functions they provide to coastal and pelagic ecosystems are increasingly threatened by the intensification of anthropogenic impacts. The Uruguayan coastline throughout the 20th century, like other coastal environments worldwide, has been the sink of a variety of trace metals derived from the rapid urbanization and industrialization of related land areas. This coastline is inhabited by two species of pinnipeds trophically and spatially segregated. Otaria byronia feeds in coastal environments while Arctocephalus australis preys mainly offshore. The present study aimed to analyze historic changes in concentrations of trace elements in teeth of both species from 1941 to the present day. We analyzed the dentin of 94 canine teeth using stable isotope analysis (δ13C) and ICP-MS to determine their feeding areas and the concentration of 10 trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) respectively. The concentration of Cr was significantly higher during '70-'80s, in both species coinciding with tannery industry development. Both species of pinnipeds have been differentially exposed to trace elements depending on their feeding area. A pelagic diet, possibly based on squid, increased the concentration of Cd in A. australis, while O. byronia has been more exposed to anthropogenic Pb and Cu associated to a costal and more benthic diet. Our results highlight dentin as a reliable matrix for historic studies on the exposure to trace elements. In light of our results, the O. byronia's declining population could be the result of the synergistic effects of trace elements together with other ecological pressures faced in their environment.


Subject(s)
Caniformia , Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Habits , Metals, Heavy/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis
6.
J Environ Manage ; 264: 110447, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32364954

ABSTRACT

Over two million leisure boats use the coastal areas of the Baltic Sea for recreational purposes. The majority of these boats are painted with toxic antifouling paints that release biocides into the coastal ecosystems and negatively impact non-targeted species. Regulations concerning the use of antifouling paints differ dramatically between countries bordering the Baltic Sea and most of them lack the support of biological data. In the present study, we collected data on biofouling in 17 marinas along the Baltic Sea coast during three consecutive boating seasons (May-October 2014, 2015 and 2016). In this context, we compared different monitoring strategies and developed a fouling index (FI) to characterise marinas according to the recorded biofouling abundance and type (defined according to the hardness and strength of attachment to the substrate). Lower FI values, i.e. softer and/or less abundant biofouling, were consistently observed in marinas in the northern Baltic Sea. The decrease in FI from the south-western to the northern Baltic Sea was partially explained by the concomitant decrease in salinity. Nevertheless, most of the observed changes in biofouling seemed to be determined by local factors and inter-annual variability, which emphasizes the necessity for systematic monitoring of biofouling by end-users and/or authorities for the effective implementation of non-toxic antifouling alternatives in marinas. Based on the obtained results, we discuss how monitoring programs and other related measures can be used to support adaptive management strategies towards more sustainable antifouling practices in the Baltic Sea.


Subject(s)
Biofouling , Disinfectants , Ecosystem , Paint , Ships
8.
Sci Total Environ ; 709: 136144, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31905569

ABSTRACT

Eutrophication is a serious threat to aquatic ecosystems globally with pronounced negative effects in the Baltic and other semi-enclosed estuaries and regional seas, where algal growth associated with excess nutrients causes widespread oxygen free "dead zones" and other threats to sustainability. Decades of policy initiatives to reduce external (land-based and atmospheric) nutrient loads have so far failed to control Baltic Sea eutrophication, which is compounded by significant internal release of legacy phosphorus (P) and biological nitrogen (N) fixation. Farming and harvesting of the native mussel species (Mytilus edulis/trossulus) is a promising internal measure for eutrophication control in the brackish Baltic Sea. Mussels from the more saline outer Baltic had higher N and P content than those from either the inner or central Baltic. Despite their relatively low nutrient content, harvesting farmed mussels from the central Baltic can be a cost-effective complement to land-based measures needed to reach eutrophication status targets and is an important contributor to circularity. Cost effectiveness of nutrient removal is more dependent on farm type than mussel nutrient content, suggesting the need for additional development of farm technology. Furthermore, current regulations are not sufficiently conducive to implementation of internal measures, and may constitute a bottleneck for reaching eutrophication status targets in the Baltic Sea and elsewhere.


Subject(s)
Bivalvia , Agriculture , Animals , Baltic States , Eutrophication , Nitrogen , Oceans and Seas , Phosphorus
9.
Glob Chang Biol ; 26(2): 417-430, 2020 02.
Article in English | MEDLINE | ID: mdl-31670451

ABSTRACT

Marine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near-natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late-spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short-term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.


Subject(s)
Fucus , Zosteraceae , Climate Change , Ecosystem , Temperature
10.
Ecol Evol ; 9(16): 9225-9238, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31463018

ABSTRACT

In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co-occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard-bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.

11.
Glob Chang Biol ; 24(9): 4357-4367, 2018 09.
Article in English | MEDLINE | ID: mdl-29682862

ABSTRACT

Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.


Subject(s)
Aquatic Organisms/physiology , Climate Change , Hot Temperature/adverse effects , Invertebrates/physiology , Animals , Germany , Seasons
12.
Ecol Evol ; 3(11): 3918-24, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24198949

ABSTRACT

Determining the existence of interconnected responses among life-history traits and identifying underlying environmental drivers are recognized as key goals for understanding the basis of phenotypic variability. We studied potentially interconnected responses among senescence, fecundity, embryos size, weight of brooding females, size at maturity and sex ratio in a semiterrestrial amphipod affected by macroscale gradients in beach morphodynamics and salinity. To this end, multiple modelling processes based on generalized additive mixed models were used to deal with the spatio-temporal structure of the data obtained at 10 beaches during 22 months. Salinity was the only nexus among life-history traits, suggesting that this physiological stressor influences the energy balance of organisms. Different salinity scenarios determined shifts in the weight of brooding females and size at maturity, having consequences in the number and size of embryos which in turn affected sex determination and sex ratio at the population level. Our work highlights the importance of analysing field data to find the variables and potential mechanisms that define concerted responses among traits, therefore defining life-history strategies.

13.
PLoS One ; 8(6): e66285, 2013.
Article in English | MEDLINE | ID: mdl-23755304

ABSTRACT

Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET) that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM) to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd) and salinity controls (SC: without canal water). CWd were prepared by diluting the water effluent (sampled during the pesticide application period) with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses.


Subject(s)
Bivalvia/drug effects , Wastewater/toxicity , Water Pollutants, Chemical/toxicity , Animals , Conservation of Natural Resources , Ecosystem , Humans , Linear Models , Mortality , Rivers , Uruguay , Waste Disposal, Fluid
14.
PLoS One ; 7(7): e40468, 2012.
Article in English | MEDLINE | ID: mdl-22792340

ABSTRACT

Species richness in sandy beaches is strongly affected by concurrent variations in morphodynamics and salinity. However, as in other ecosystems, different groups of species may exhibit contrasting patterns in response to these environmental variables, which would be obscured if only aggregate richness is considered. Deconstructing biodiversity, i.e. considering richness patterns separately for different groups of species according to their taxonomic affiliation, dispersal mode or mobility, could provide a more complete understanding about factors that drive species richness patterns. This study analyzed macroscale variations in species richness at 16 Uruguayan sandy beaches with different morphodynamics, distributed along the estuarine gradient generated by the Rio de la Plata over a 2 year period. Species richness estimates were deconstructed to discriminate among taxonomic groups, supralittoral and intertidal forms, and groups with different feeding habits and development modes. Species richness was lowest at intermediate salinities, increasing towards oceanic and inner estuarine conditions, mainly following the patterns shown for intertidal forms. Moreover, there was a differential tolerance to salinity changes according to the habitat occupied and development mode, which determines the degree of sensitivity of faunal groups to osmotic stress. Generalized (additive and linear) mixed models showed a clear increase of species richness towards dissipative beaches. All taxonomic categories exhibited the same trend, even though responses to grain size and beach slope were less marked for crustaceans and insects than for molluscs or polychaetes. However, supralittoral crustaceans exhibited the opposite trend. Feeding groups decreased from dissipative to reflective systems, deposit feeders being virtually absent in the latter. This deconstructive approach highlights the relevance of life history strategies in structuring communities, highlighting the relative importance that salinity and morphodynamic gradients have on macroscale diversity patterns in sandy beaches.


Subject(s)
Biodiversity , Estuaries , Animals , Aquatic Organisms/physiology , Crustacea/physiology , Ecosystem , Feeding Behavior , Insecta/physiology , Models, Biological , Mollusca/physiology , Particle Size , Rivers , Salinity , Silicon Dioxide/chemistry , Uruguay
SELECTION OF CITATIONS
SEARCH DETAIL
...