Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 760: 143384, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33190889

ABSTRACT

Using catalytic converters is one of the most effective methods to control vehicle emissions. A washcoat of cerium oxide-zirconia (CeO2-ZrO2) has been used to enhance the performance of the catalytic converter device. To date, the prevalence of this material in the environment has not been assessed. In this study, we present evidence of the existence of inhalable zirconia in urban dust. Samples of the washcoat, exhaust pipe, topsoil, and road dust were analyzed by X-ray fluorescence, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence (PL) spectroscopy, and thermally stimulated luminescence (TSL). The results showed a CeO2-ZrO2 phase separation after sintering. This causes the emission of ZrO2, CeO2, and CeZrOx particles smaller than 1 µm, which can likely reach the alveolar macrophages in the lungs. The Ce-Zr content in road dust exceeds geogenic levels, and a significant correlation of 0.87 (p < 0.05) reflects a common anthropic source. Chronic exposure to such refractory particles may result in the development of non-occupational respiratory diseases. The inhalable crystalline compounds emitted by vehicles are a significant environmental health hazard, revealing the need for further investigation and assessment of zirconia levels generated by automobiles in urban areas worldwide.

2.
Sci Total Environ ; 713: 136481, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31954252

ABSTRACT

Inhalation of playground dust-derived fine particles in schoolyards poses a risk from exposure to metal(oids) and minerals. In this work, we obtained the total concentration and bioaccessibility of metal(oids) with Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) synthetic solutions, simulating the extracellular neutral pH environment of the lung and the intracellular conditions of the macrophage, respectively. Scanning Electron Microscope (SEM), and Dynamic Light Scattering analysis (DLS) techniques were used to characterize particles with a size smaller than 2.5 µm, which can be assimilated by macrophages in the deep part of the lung. Arsenic (As), lead (Pb), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) showed concentrations of 39.9, 147.9, 286, 1369, 2313, 112,457 mg·kg-1, respectively. The results indicated that all studied elements were enriched when compared to (i) local geochemical background and (ii) findings reported in other cities around the world. Bioaccessibility of metal(oids) in GS was low-moderate for most studied elements. However, in ALF assays, bioaccessibility was high among the samples: for lead (Pb = 34-100%), arsenic (As = 14.7-100%), copper (Cu = 17.9-100%), and zinc (Zn = 35-52%) possibly related to hydrophobic minerals in dust. SEM and DLS image analysis showed that playground dust particles smaller than 2.5 µm are dominant, particularly particles with a size range of 500-600 nm. The polydispersity detected in these particle sizes showed that most of them might be crystalline compounds (elongated shapes) forming agglomerates instead of combustion particles (spheres). Moreover, the circularity detected varies from 0.57 to 0.79 (low roundness), which corroborates this finding. The presence of agglomerates of ultrafine/nanoparticles containing highly bioaccessible metals in playground sites may have severe implications in children's health. Therefore, further studies are required to characterize the size distribution, structure, shape and composition of such minerals which are essential factors related to the toxicology of inhaled dust particles.


Subject(s)
Dust , Cities , Lysosomes , Metals , Particle Size
3.
Chem Commun (Camb) ; 47(14): 4129-31, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21380475

ABSTRACT

Facile and reproducible SERS signals from Shewanella oneidensis were obtained utilizing silver nanoparticles (AgNPs) and silver nanowires (AgNWs). Additionally, SERS images identify the distribution of SERS hot-spots. One important observation is the synergistically enhanced SERS signal when AgNPs and AgNWs are used in conjunction, due to constructively enhanced electromagnetic field.


Subject(s)
Metal Nanoparticles/chemistry , Nanowires/chemistry , Shewanella/isolation & purification , Silver/chemistry , Shewanella/ultrastructure , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...