Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 10: 725, 2019.
Article in English | MEDLINE | ID: mdl-31293602

ABSTRACT

Olive, representing one of the most important fruit crops of the Mediterranean area, is characterized by a general low fruit yield, due to numerous constraints, including alternate bearing, low flower viability, male-sterility, inter-incompatibility, and self-incompatibility (SI). Early efforts to clarify the genetic control of SI in olive gave conflicting results, and only recently, the genetic control of SI has been disclosed, revealing that olive possesses an unconventional homomorphic sporophytic diallelic system of SI, dissimilar from other described plants. This system, characterized by the presence of two SI groups, prevents self-fertilization and regulates inter-compatibility between cultivars, such that cultivars bearing the same incompatibility group are incompatible. Despite the presence of a functional SI, some varieties, in particular conditions, are able to set seeds following self-fertilization, a mechanism known as pseudo-self-compatibility (PSC), as widely reported in previous literature. Here, we summarize the results of previous works on SI in olive, particularly focusing on the occurrence of self-fertility, and offer a new perspective in view of the recent elucidation of the genetic architecture of the SI system in olive. Recent advances in research aimed at unraveling the molecular bases of SI and its breakdown in olive are also presented. The clarification of these mechanisms may have a huge impact on orchard management and will provide fundamental information for the future of olive breeding programs.

2.
Sex Plant Reprod ; 24(1): 47-61, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20596730

ABSTRACT

St. John's wort (Hypericum perforatum L., 2n = 4x = 32) is a medicinal plant that produces pharmaceutically important metabolites with antidepressive, anticancer and antiviral activities. It is also regarded as a serious weed in many countries. H. perforatum is furthermore an attractive model system for the study of apomixis. Natural populations of H. perforatum are predominantly composed of tetraploid individuals, although diploids and hexaploids are known to occur. It has been demonstrated that while diploids are sexual, polyploids are facultative apomictic whereby a single individual can produce both sexual and apomictic seeds. Despite our increasing understanding of gamete formation in sexually reproducing species, relatively little is known regarding the cytological basis of reproduction in H. perforatum. Here, we have studied embryo sac formation and the genetic constitution of seeds by means of staining-clearing of ovules/ovaries, DIC microscopy and flow cytometric seed screening (FCSS) of embryo and endosperm DNA contents. Comparisons of female sporogenesis and gametogenesis between sexual and apomictic accessions have enabled the identification of major phenotypic differences in embryo sac formation, in addition to complex fertilization scenarios entailing reduced and unreduced male and female gametes. These data provide new insights into the production of aposporous seeds in H. perforatum, and complement ongoing population genetic, genomic and transcriptomic studies.


Subject(s)
Hypericum/cytology , Hypericum/metabolism , Endosperm/cytology , Endosperm/metabolism , Endosperm/physiology , Flow Cytometry , Gametogenesis, Plant/genetics , Gametogenesis, Plant/physiology , Hypericum/physiology , Ploidies , Polyploidy , Tetraploidy
3.
Anim Genet ; 41 Suppl 2: 23-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21070272

ABSTRACT

A large proportion of mammalian genomes is represented by transposable elements (TE), most of them being long interspersed nuclear elements 1 (LINE-1 or L1). An increased expression of LINE-1 elements may play an important role in cellular stress-related conditions exerting drastic effects on the mammalian transcriptome. To understand the impact of TE on the known horse transcriptome, we masked the horse EST database, pointing out that the amount is consistent with other major vertebrates. A previously developed transcript-derived fragments (TDFs) dataset, deriving from exercise-stimulated horse peripheral blood mononuclear cells (PBMCs), was found to be enriched with L1 (26.8% in terms of bp). We investigated the involvement of TDFs in exercise-induced stress through bioinformatics and gene expression analysis. Results indicate that LINE-derived sequences are not only highly but also differentially expressed during physical effort, hinting at interesting scenarios in the regulation of gene expression in relation to exercise.


Subject(s)
Horses/genetics , Long Interspersed Nucleotide Elements , Physical Conditioning, Animal , Animals , Leukocytes, Mononuclear/metabolism
4.
Heredity (Edinb) ; 96(4): 322-34, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16508660

ABSTRACT

Apomixis is a mode of asexual reproduction through seed. Progeny produced by apomixis are clonal replicas of a mother plant. The essential feature of apomixis is that embryo sacs and embryos are produced in ovules without meiotic reduction or egg cell fertilisation. Thus, apomixis fixes successful gene combinations and propagates high fitness genotypes across generations. A more profound knowledge of the mechanisms that regulate reproductive events in plants would contribute fundamentally to understanding the evolution and genetic control of apomixis. Molecular markers were used to determine levels of genetic variation within and relationship among ecotypes of the facultative apomict Hypericum perforatum L. (2n = 4x = 32). All ecotypes were polyclonal, being not dominated by a single genotype, and characterised by different levels of differentiation among multilocus genotypes. Flow cytometric analysis of seeds indicated that all ecotypes were facultatively apomictic, with varying degrees of apomixis and sexuality. Seeds set by haploid parthenogenesis and/or by fertilisation of aposporic egg cells were detected in most populations. The occurrence of both dihaploids and hexaploids indicates that apospory and parthenogenesis may be developmentally uncoupled and supports two distinct genetic factors controlling apospory and parthenogenesis in this species. Cyto-embryological analysis showed that meiotic and aposporic processes do initiate within the same ovule: the aposporic initial often appeared evident at the time of megaspore mother cell differentiation. Our observations suggest that the egg cell exists in an active metabolic state before pollination, and that its parthenogenetic activation leading to embryo formation may occur before fertilisation and endosperm initiation.


Subject(s)
Genetic Variation , Hypericum/genetics , DNA Primers , Ecosystem , Genetic Markers , Geography , Hypericum/physiology , Italy , Random Amplified Polymorphic DNA Technique , Reproduction , Seeds , Spores/physiology
5.
Plant Biol (Stuttg) ; 6(2): 222-30, 2004.
Article in English | MEDLINE | ID: mdl-15045675

ABSTRACT

Puya raimondii Harms is an outstanding giant rosette bromeliad found solely around 4000 m above sea level in the Andes. It flowers at the end of an 80 - 100-year or even longer life cycle and yields an enormous (4 - 6 m tall) spike composed of from 15,000 to 20,000 flowers. It is endemic and currently endangered, with populations distributed from Peru to the north of Bolivia. A genomic DNA marker-based analysis of the genetic structure of eight populations representative of the whole distribution of P. raimondii in Peru is reported in this paper. As few as 14 genotypes out of 160 plants were detected. Only 5 and 18 of the 217 AFLP marker loci screened were polymorphic within and among these populations, respectively. Four populations were completely monomorphic, each of the others displayed only one to three polymorphic loci. Less than 4 % of the total genomic variation was within populations and genetic similarity among populations was as high as 98.3 %. Results for seven cpSSR marker loci were in agreement with the existence of a single progenitor. Flow cytometry of seed nuclear DNA content and RAPD marker segregation analysis of progeny plantlets demonstrated that the extremely uniform genome of P. raimondii populations is not compatible with agamospermy (apomixis), but consistent with an inbreeding reproductive strategy. There is an urgent need for a protection programme to save not only this precious, isolated species, but also the unique ecosystem depending on it.


Subject(s)
Bromeliaceae/physiology , Chromosomes, Plant/genetics , Genetic Variation/physiology , Bromeliaceae/classification , Bromeliaceae/genetics , Chromosome Mapping , Conservation of Natural Resources , DNA, Plant/genetics , DNA, Plant/isolation & purification , Environment , Flow Cytometry , Geography , Inbreeding , Peru , Polymerase Chain Reaction , Polymorphism, Genetic , Reproduction/physiology
6.
Heredity (Edinb) ; 90(2): 169-80, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12634824

ABSTRACT

Salix alba-Salix fragilis complex includes closely related dioecious polyploid species, which are obligate outcrossers. Natural populations of these willows and their hybrids are represented by a mixture of highly heterozygous genotypes sharing a common gene pool. Since nothing is known about their genomic constitution, tetraploidy (2n=4x=76) in willow species makes basic and applied genetic studies difficult. We have used a two-way pseudotestcross strategy and single-dose markers (SDMs) to construct the first linkage maps for both pistillate and staminate willows. A total of 242 amplified fragment length polymorphisms (AFLPs) and 50 selective amplifications of microsatellite polymorphic loci (SAMPL) markers, which showed 1:1 segregation in the F(1) mapping populations, were used in linkage analysis. In S. alba, 73 maternal and 48 paternal SDMs were mapped to 19 and 16 linkage groups covering 708 and 339 cM, respectively. In S. fragilis, 13 maternal and 33 paternal SDMs were mapped in six and 14 linkage groups covering 98 and 321 cM, respectively. For most cosegregation groups, a comparable number of markers linked in coupling and repulsion was identified. This finding suggests that most of chromosomes pair preferentially as occurs in allotetraploid species exhibiting disomic inheritance. The detection of 10 pairs of marker alleles from single parents showing codominant inheritance strengthens this hypothesis. The fact that, of the 1122 marker loci identified in the two male and female parents, the vast majority (77.5%) were polymorphic and as few as 22.5% were shared between parental species highlight that S. alba and S. fragilis genotypes are differentiated. The highly difference between S. alba- and S. fragilis-specific markers found in both parental combinations (on average, 65.3 vs 34.7%, respectively) supports the (phylogenetic) hypothesis that S. fragilis is derived from S. alba-like progenitors.


Subject(s)
Chromosome Mapping , Chromosomes, Plant , Polyploidy , Salix/genetics , Crosses, Genetic , Genetic Markers , Hybridization, Genetic , Polymorphism, Genetic
7.
Mol Genet Genomics ; 267(1): 107-14, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11919721

ABSTRACT

The Sequence-Specific Amplification Polymorphism (S-SAP) method, recently derived from the Amplified Fragment Length Polymorphism (AFLP) technique, produces amplified fragments containing a retrotransposon LTR sequence at one end and a host restriction site at the other. We report the application of this procedure to the LTR of the Tms1 element from Medicago sativa L. Genomic dot-blot analysis indicated that Tms1 LTRs represent about 0.056% of the M. sativa genome, corresponding to 16 x 10(3) copies per haploid genome. An average of 66 markers were amplified for each primer combination. Overall 49 polymorphic fragments were reliably scored and mapped in a F(1) population obtained by crossing diploid M. falcata with M. coerulea. The utility of the LTR S-SAP markers was higher than that of AFLP or SAMPL (Selective Amplification of Microsatellite Polymorphic Loci) markers. The efficiency index of the LTR S-SAP assay was 28.3, whereas the corresponding values for AFLP and SAMPL markers were 21.1 and 16.7, respectively. The marker index for S-SAP was 13.1, compared to 8.8 for AFLP and 9.5 for SAMPL. Application of the Tms1 LTR-based S-SAP to double-stranded cDNA resulted in a complex banding pattern, demonstrating the presence of Tms1 LTRs within exons. As the technique was successfully applied to other species of the genus Medicago, it should prove suitable for studying genetic diversity within, and relatedness between, alfalfa species.


Subject(s)
Genetic Markers , Medicago sativa/genetics , Repetitive Sequences, Nucleic Acid , DNA, Complementary , Exons , Polymorphism, Genetic
8.
Theor Appl Genet ; 104(2-3): 273-280, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12582697

ABSTRACT

The high versatility of the mode of reproduction and the retention of a pollen recognition system are the factors responsible for the extreme complexity of the genome in Poa pratensis L. Two genetic maps, one of an apomictic and one of a sexual genotype, were constructed using a two-way pseudo-testcross strategy and multiplex PCR-based molecular markers (AFLP and SAMPL). Due to the high ploidy level and the uncertainty of chromosome pairing-behavior at meiosis, only parent-specific single-dose markers (SDMs) that segregated 1:1 in an F(1) mapping population (161 out of 299 SAMPLs, and 70 out of 275 AFLPs) were used for linkage analysis. A total of 41 paternal (33 SAMPLs and 8 AFLPs) and 47 maternal (33 SAMPLs and 14 AFLPs) SDMs, tested to be linked in coupling phase, were mapped to 7+7 linkage groups covering 367 and 338.4 cM, respectively. The comparison between the two marker systems revealed that SAMPL markers were statistically more efficient than AFLP ones in detecting parent-specific SDMs (75% vs 32.4%). There were no significant differences in the percentages of distorted marker alleles detected by the two marker systems (27.8% of SAMPLs vs 21.3% of AFLPs). The pairwise comparison of co-segregational groups for linkage detection between marker loci suggested that at least some of the P. pratensis chromosomes pair preferentially at meiosis-I.

9.
Hereditas ; 135(2-3): 187-92, 2001.
Article in English | MEDLINE | ID: mdl-12152333

ABSTRACT

One hundred and six landraces belonging to 7 species of the Triticeae tribe were collected in central Italy by DBVBA (Perugia University), DIBIAGA (Ancona University) and ARSSA (Abruzzo Region Agricultural Development Agency) in different individual and joint missions. A few accessions were supplied by private and other public organisations. Triticum dicoccum Schubler is the most widespread species, followed by T. aestivum L., T. monococcum L., T. spelta L., T. turgidum var. durum Desf., Secale cereale L. and Hordeum vulgare L. Besides the presence of landraces reproduced by farmers over generations, information related to on-farm management and to qualitative/organoleptic traits as well as information related to their local names, uses, traditions and social context was gathered during the missions. The majority of the accessions was characterised by morphological and phenological traits and molecular markers. This work shows the presence of morpho-phenologic and genetic differences among landraces and the importance of some species in the agricultural systems and food customs of the investigated area. Particularly for emmer three well distinct landraces are present, "Farro Italia Centrale", "Farro della Garfagnana" and "Farro Italia Meridionale". Other interesting and traditional landraces are the "Solina" common wheat in Abruzzo and the "Orzo mondo" naked barley in Marche. Most of the populations are still cultivated in marginal lands and under low input or organic agronomic conditions; nevertheless, in many cases, they are found near modern varieties in conventional agriculture systems. Moreover, the in situ (on-farm) conservation of Triticeae landraces in central Italy is strictly linked to elderly farmers.


Subject(s)
Triticum/genetics , Conservation of Natural Resources , Crops, Agricultural/genetics , Genetic Variation , Italy , Phylogeny
10.
Sex Plant Reprod ; 14(4): 213-7, 2001 Dec.
Article in English | MEDLINE | ID: mdl-24573429

ABSTRACT

Despite the potential that apomixis has for agriculture, there is little information regarding the genetic control of its functional components. We carried out a cytohistological investigation on an F1 segregating population of Poa pratensis obtained from a cross between a sexual and an apomictic parent. About half of the F1 progeny plants were parthenogenic, as adjudicated by an auxin test. The degree of parthenogenesis ranged from 1.44% to 92.9%. Apospory was detected in parthenogenetic plants as well as in two non-parthenogenetic individuals. These results indicate that two distinct genetic factors control apospory and parthenogenesis in P. pratensis and that apospory and parthenogenesis may be developmentally uncoupled.

11.
Sex Plant Reprod ; 14(4): 233-8, 2001 Dec.
Article in English | MEDLINE | ID: mdl-24573432

ABSTRACT

Mutants showing features of apomixis have been documented in alfalfa (Medicago sativa L.), a natural outcrossing sexual species. A differential display of mRNAs that combines cDNA-AFLP markers and bulked segregant analysis was carried out with the aim of selecting expressed sequence tags (ESTs) and cloning candidate genes for apomeiosis in mutants of alfalfa characterized by 2n egg formation at high frequencies. The approach enabled us to select either mutant- or wild type-specific transcript derived-fragments and to detect transcriptional changes potentially related to 2n eggs. Sequence alignments of a subset of 40 polymorphic clones showed significant homologies to genes of known function. An EST with identity to a ß-tubulin gene, highly expressed in the wild type and poorly expressed in the apomeiotic mutants, and an EST with identity to a Mob1-like gene, qualitatively polymorphic between pre- and post-meiotic stages, were selected as candidate genes for apomeiosis because of their putative roles in the cell cycle. A number of clone-specific primers were designed for performing both 5' and 3' rapid amplification of cDNA ends to obtain the full-length clones. Southern blot hybridization revealed that both clones belong to a multi-gene family with a minimum of three genomic DNA members each. Northern blot hybridization of total RNA samples and in situ hybridization of whole buds enabled the definition of their temporal and spatial expression patterns in reproductive organs. Experimental achievements towards the elucidation of apomeiotic megasporogenesis in alfalfa are presented and discussed.

12.
Genome ; 43(3): 528-37, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10902718

ABSTRACT

The production of eggs with the sporophytic chromosome number (2n eggs) in diploid alfalfa (Medicago spp.) is mainly associated with the absence of cytokinesis after restitutional meiosis. The formation of 2n eggs through diplosporic apomeiosis has also been documented in a diploid mutant of M. sativa subsp. falcata (L.) Arcang. (2n = 2x = 16), named PG-F9. Molecular tagging of 2n-egg formation appears to be an essential step towards marker-assisted breeding and map-based cloning strategies aimed at investigating and manipulating reproductive mutants of the M. sativa complex. We made controlled crosses between PG-F9 and three wild type plants of M. sativa subsp. coerulea (Less.) Schm. (2n = 2x = 16) and then hand-pollinated the F1 progenies with tetraploid plants of M. sativa subsp. sativa L. (2n = 4x = 32). As a triploid embryo block prevents the formation of 3x progenies in alfalfa because of endosperm imbalance, and owing to the negligible selfing rate, seed set in 2x-4x crosses was used to discriminate the genetic capacity for 2n-egg production. F1 plants that exhibited null or very low seed sets were classified as normal egg producers and plants with high seed sets as 2n-egg producers. A bulked segregant analysis (BSA) with RAPD (random amplified polymorphic DNA), ISSR (inter-simple sequence repeat), and AFLP (amplified fragment length polymorphism) markers was employed to identify a genetic linkage group related to the 2n-egg trait using one of the three F1 progenies. This approach enabled us to detect a paternal ISSR marker of 610 bp, generated by primer (CA)8-GC, located 9.8 cM from a putative gene (termed Tne1, two-n-eggs) that in its recessive form determines 2n eggs and a 30% recombination genomic window surrounding the target locus. Eight additional RAPD and AFLP markers, seven of maternal, and one of paternal origin, significantly co-segregated with the trait under investigation. The minimum number of quantitative trait loci (QTLs) controlling seed set in 2x-4x crosses was estimated by ANOVA and regression analysis. Four maternal and three paternal independent molecular markers significantly affected the trait. A paternal RAPD marker allele, mapped in the same linkage group of Tne1, explained 43% of the variation for seed set in 2x-4x crosses indicating the presence of a major QTL. A map of the PG-F9 chromosome regions carrying the minor genes that determine the expression level of 2n eggs was constructed using selected RAPD and AFLP markers. Two of these genes were linked to previously mapped RFLP loci belonging to groups 1 and 8. Molecular and genetic evidence support the involvement of at least five genes.


Subject(s)
Medicago sativa/genetics , Ploidies , Seeds/genetics , Chromosome Mapping , Diploidy , Genetic Markers , Medicago sativa/cytology , Meiosis , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Polyploidy , Random Amplified Polymorphic DNA Technique , Reproduction
13.
Theor Appl Genet ; 91(6-7): 1008-15, 1995 Nov.
Article in English | MEDLINE | ID: mdl-24169990

ABSTRACT

A program of sexual polyploidization was carried out in alfalfa using plants from wild diploid species that produced male or female unreduced gametes. Sixteen progenies from 2x-4x and 2x-2x crosses were examined with a combination of morphological, cytological and molecular analyses. The chromosome counts revealed diploid, tetraploid and aneuploid plants. Plants with B chromosomes were also detected. The leaf area of the plants was a useful characteristic for distinguishing tetraploid from diploid plants obtained by unilateral or bilateral sexual polyploidization. Leaf shape and leaf margin were not correlated with the ploidy levels. Plants with supernumerary chromosomes displayed obovate or elliptic leaves which differed markedly from the range of forms typical of diploid and tetraploid alfalfa plants. RAPD markers were investigated in all progeny plants to determine maternal and paternal amplification products. Three alfalfa-specific primers proved to be effective in revealing the hybrid origin of the plants. A combination of cytological, morphological and molecular analyses is essential for a detailed genetic characterization of progenies in programs of sexual polyploidization.

SELECTION OF CITATIONS
SEARCH DETAIL
...