Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 192: 106238, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37883828

ABSTRACT

Seagrass epiphytic communities act as ecological indicators of the quality status of vegetated coastal environments. This study aims to determine the effect leaf epiphytes has on the sediment capture and distribution from outside sources. Thirteen laboratory experiments were conducted under a wave frequency of 0.5 Hz. Three epiphyte models were attached to a Zostera marina canopy of 100 plants/m2 density. The sediment deposited to the seabed, captured by the epiphytic leaf surface, and remaining in suspension within the canopy were quantified. This study demonstrated that the amount of epiphytes impacts on the sediment stocks. Zostera marina canopies with high epiphytic areas and long effective leaf heights may increase the sediment captured on the epiphyte surfaces. Also, reducing suspended sediment and increasing the deposition to the seabed, therefore enhancing the clarity of the water column. For largest epiphytic areas, a 34.5% increase of captured sediment mass is observed. The sediment trapped on the leaves can be 10 times greater for canopies with the highest epiphytic areas than those without epiphytes. Therefore, both the effective leaf length and the level of epiphytic colonization are found to determine the seagrass canopy ability at distributing sediment.


Subject(s)
Environment , Zosteraceae , Plants , Plant Leaves
2.
Mar Environ Res ; 188: 105997, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37099992

ABSTRACT

Habitat degradation in coastal ecosystems has resulted in the fragmentation of coastal aquatic vegetation and compromised their role in supplying essential ecological services such as trapping sediment or sequestering carbon. Fragmentation has changed seagrass architecture by decreasing the density of the canopy or engendering small patches of vegetated areas. This study aims to quantify the role different patch sizes of vegetation with different canopy densities have in the spatial distribution of sediment within a patch. To this aim, two canopy densities, four different patch lengths, and two wave frequencies were considered. The amounts of sediment deposited onto the bed, captured by plant leaves, remaining in suspension within the canopy, and remaining in suspension above the canopy were used to understand the impact hydrodynamics has on sediment distribution patterns within seagrass patches. In all the cases studied, patches reduced the suspended sediment concentrations, increased the capture of particles in the leaves, and increased the sedimentation rates to the bed. For the lowest wave frequency studied (0.5 Hz), the sediment deposited to the bottom was enhanced at canopy edges, resulting in spatial heterogeneous sedimentation patterns. Therefore, restoration and preservation of coastal aquatic vegetation landscapes can help face future climate change scenarios where an increase in sedimentation can help mitigate predicted sea level rise in coastal areas.


Subject(s)
Ecosystem , Geologic Sediments , Carbon , Hydrodynamics , Climate Change
3.
Sci Rep ; 13(1): 1904, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732608

ABSTRACT

Seagrass canopies are coastal ecosystems that are able to modify the abiotic environment through their architectural structure. They have different structural parameters, such as plant stem stiffness, patch length and canopy density, all of which determine their overall functionality in modifying the seafloor hydrodynamics within coastal areas. To determine the interaction between hydrodynamics and the canopy structure, a set of laboratory experiments were carried out with both rigid and flexible stems for different canopy densities, patch lengths and wave frequencies. In the upper part of the canopy, flexible plants move with the flow without generating drag or producing turbulent kinetic energy, while rigid plants generate drag and produce turbulent kinetic energy. In the inner canopy layer, both types of plants behave like rigid stems and produce turbulent kinetic energy. A non-dimensional model based on the turbulent kinetic energy, the wave velocity and the plant characteristics is presented to describe the behaviour of flexible and rigid plants under an oscillating flow. Flexible plants behave in a stiffer manner under high wave frequencies than under low wave frequencies, thus making their behaviour closer to that of rigid plant stems. This difference between both canopy structures can explain their distribution in the environment, with rigid canopies being more extended in more sheltered regions while flexible plants are characteristic of more exposed regions with high flow energy.


Subject(s)
Ecosystem , Plants , Hydrodynamics
4.
Ecotoxicol Environ Saf ; 228: 113001, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34800778

ABSTRACT

Plastic debris has been found to be ubiquitous in many aquatic ecosystems and is constantly accumulating, not only because more and more plastic is being rapidly released into the environment, but also because its slow degradation means it persists in the water. Some more buoyant plastics accumulate in the water column, whereas other heavier types sink to the bottom. Consequently, the presence of microplastics can threaten organisms living in the water column as well as those found in the benthic zone. In this study, the filter feeder Daphnia has been found to ingest microplastics as the particle diameter (< 30 µm) is within their edible particle size range and they are unable to differentiate between particles of different natures. Four different treatments were considered: food only; only microplastic particles; 50% food and 50% microplastic particles; neither food nor microplastics. Sinking microplastics have been found to decrease Daphnia magna individuals' swimming velocity during vertical or cruising swimming trajectories, therefore demonstrating the sublethal effects microplastics have on this organism. In addition, microplastics decreased their body growth and survival rates. In cases with the presence of only microplastics, the swimming trajectories of Daphnia indicated the most serious stress experienced as individuals reversed vertical or cruising swimming trajectories to hopping and sinking movements. Therefore, Daphnia individuals in freshwater systems polluted by microplastics might take on the role of ingesting them and later on transporting them to deeper layer water column. In this way microplastics that would remain in the water column for a long time due to their buoyancy, might accumulate at the bottom of the water column.

5.
Sci Total Environ ; 795: 148854, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34328920

ABSTRACT

For the past two centuries coastal zones have been suffering seagrass loss resulting in a network of vegetated patches which are barely interconnected and which may compromise the ecological services provided by the canopy. To optimize management efforts for successful restoration strategies, questions need to be addressed about what appropriate canopy architectural considerations are required under certain hydrodynamic conditions. In this study, a set of laboratory experiments were conducted in which hydrodynamic conditions, plant densities and vegetated patch lengths were varied to determine minimum patch lengths for successful management strategies. Based on the TKE production, this study finds two possible canopy behaviours of seagrasses under oscillating flows: one where plants do not interact with the flow and the other where they interact with waves and produce TKE. A threshold from the first to second behaviour occurs for [Formula: see text] = 2, where CD is the drag of the vegetated patch, n is the number of stems per m2, d is the stem diameter and ϕ is the solid plant fraction. Therefore, high canopy densities, large patches of vegetation or moderate wave velocities will produce plant-wave interaction, whereas low canopy densities, small vegetation patches or slow wave velocities will produce a behaviour akin to the non-vegetated cases.


Subject(s)
Ecosystem , Hydrodynamics
6.
J Environ Manage ; 278(Pt 1): 111538, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33113392

ABSTRACT

Nature-based wastewater treatments are an economic and sustainable alternative to intensive technologies in rural areas, although their efficiency needs to be improved. This study explores technological co-operation between zooplankton (e.g., Daphnia magna) and bacterial and algal biofilms in a 1.5 m3 zooplankton-based reactor for the on-site treatment of secondary urban wastewater. The efficiency of the reactor was evaluated over a 14-month period without any maintenance. The results suggest a low seasonality effect on nutrient polishing (organic matter and nitrogen) and the removal of solids (TSS and turbidity). The best performance, involving a decrease in organic carbon, nitrogen, E. coli loads, and solid content was achieved in winter when operating the reactor at 750 L d-1. Under these conditions, the quality of the effluent water was suitable for its reuse for six different purposes in conformance with Spanish legislation. These results demonstrate that the zooplankton-based reactor presented here can be used as an eco-sustainable tertiary treatment to provide water suitable for reuse. On-site research revealed that the robustness of the reactor against temperature and oxygen fluctuations needs to be improved to ensure good performance throughout the year.


Subject(s)
Wastewater , Zooplankton , Animals , Biofilms , Bioreactors , Escherichia coli , Nitrogen , Waste Disposal, Fluid , Weights and Measures
7.
Environ Pollut ; 267: 115439, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32892007

ABSTRACT

Daphnids, including the water flea Daphnia magna, can be exploited for wastewater treatment purposes, given that they are filter feeder organisms that are able to remove suspended particles from water. The presence of pollutants, such as microplastics and chemicals, might be considered stressors and modify the behaviour and survival of D. magna individuals. The impact of the cumulative pollutants that regulate the fate of living organisms has yet to be fully determined. Here we present the effect of double and triple combinations of stressors on the behaviour of D. magna. The impact of water temperature, ammonium and polystyrene microplastics on the filtration capacity and survival of D. magna is studied. Water temperatures of 15 °C, 20 °C and 25 °C, microplastic-to-food ratios of 25% and 75%, and ammonium concentrations of 10 and 30 mg N-NH4+ L-1 are tested after making dual and triple combinations of the parameters. A synergistic effect between water temperature and ammonium is normally observed but not in the case of the lower values of ammonium concentration and temperature. The combination of three stressors (water temperature, microplastics and ammonium) is also found to be synergistic, producing the greatest impact on D. magna filtration capacity and reducing their survival. In comparison with the effect of the two stressor conditions, the combination of the three stressors caused a reduction of between 13.1% and 91.7% in the t50% time (the time required for a 50% reduction in the D. magna filtration capacity) and a reduction of between 4.8% and 54.5% in TD50 (the time for 50% mortality).


Subject(s)
Ammonium Compounds , Water Pollutants, Chemical , Animals , Daphnia , Humans , Microplastics , Plastics/toxicity , Temperature , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Sci Total Environ ; 686: 151-157, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31176814

ABSTRACT

Daphnia populations are present in lakes and ponds. They are known to experience diurnal vertical migrations according to their feeding needs. During the day they migrate downwards to avoid predation in light-receiving layers and at night they migrate upwards, searching for food in the shallow productive layers. The light photoperiod and light intensity vary depending on the latitude and, therefore, the precise location of lakes and ponds will be an additional and crucial parameter in determining the development of Daphnia. Here we will focus on a population of Daphnia magna (a genus of the Cladocera order). The effect of both light intensity and photoperiod on Daphnia filtration was studied in laboratory experiments. An increase in the light intensity resulted in two D. magna responses depending on the exposure time of individuals to light. Short time exposures to a decrease in the light intensity of less than one day produced an increase in the D. magna filtration. However, exposures of longer than one day resulted in a decrease in the D. magna filtration along with a decrease in the light intensity. Photoperiod exposures of 8, 12 and 16 h produced greater D. magna filtrations than photoperiods of 0, 4 and 24 h. In this study, regulation of the light intensity and the period of exposure were used in laboratory experiments to establish D. magna development thresholds by latitudinal variation in the photoperiod.


Subject(s)
Daphnia/physiology , Photoperiod , Animals , Filtration , Light
9.
Environ Pollut ; 251: 434-441, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31103003

ABSTRACT

There is consensus on the need to study the potential impact microplastics (MP) have on freshwater planktonic organisms. It is not yet fully understood how MP enter the aquatic food web or the effect they have on all the trophic levels. As a result of the potential for MP to accumulate throughout food webs, there is increasing interest in evaluating their fate in a variety of environmental conditions. This study investigated the variability in the ingestion of MP to food ratios and the exposed time of MP to Daphnia magna in non-sheared and sheared conditions. The sheared environment provided Daphnia magna with the conditions for optimal filtering capacity. Regardless of the ratios of MP concentration to food concentration (MP:Food), the filtration capacity of the Daphnia magna was enhanced in the sheared experiments. In both the sheared and non-sheared experiments, filtration capacity decreased when the ratios of MP to food concentration and the exposure times to MP were increased. Mortality was mainly enhanced in the non-sheared conditions at higher MP concentrations and exposure times to MP. No mortality was found in the sheared conditions for the exposure times studied. Therefore, in aquatic systems that undergo constant low sheared conditions, Daphnia magna can survive longer when exposed to MP than in calm conditions, provided food concentrations do not limit their capacity to filter.


Subject(s)
Daphnia/physiology , Dietary Exposure/adverse effects , Plastics/metabolism , Water Pollutants, Chemical/metabolism , Animals , Daphnia/metabolism , Dietary Exposure/analysis , Eating , Food , Hydrodynamics , Plastics/analysis , Plastics/isolation & purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification
10.
Sci Total Environ ; 621: 626-633, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29195209

ABSTRACT

Daphnia are filter feeder organisms that prey on small particles suspended in the water column. Since Daphnia individuals can feed on wastewater particles, they have been recently proposed as potential organisms for tertiary wastewater treatment. However, analysing the effects of hydrodynamics on Daphnia individuals has scarcely been studied. This study focuses then, on quantifying the filtration and swimming velocities of D. magna individuals under different hydrodynamic conditions. Both D. magna filtration and movement responded differently if the flow was laminar or if it was turbulent. In a laminar-dominated flow regime Daphnia filtration was enhanced up to 2.6 times that of a steady flow, but in the turbulent-dominated flow regime D. magna filtration was inhibited. In the laminar flow regime D. magna individuals moved freely in all directions, whereas in the turbulent flow regime they were driven by the streamlines of the flow. A model based on Daphnia-particle encountering revealed that the filtration efficiency in the laminar regime was driven by the length of the D. magna individuals and the shear rate imposed by the system.


Subject(s)
Daphnia/physiology , Water Movements , Water Pollutants, Chemical/isolation & purification , Animals , Wastewater , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...