Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844736

ABSTRACT

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Subject(s)
Amniotic Fluid , Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Multiple Sclerosis , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , Amniotic Fluid/cytology , Amniotic Fluid/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Multiple Sclerosis/therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Female , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL
2.
Nat Prod Res ; : 1-6, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38013219

ABSTRACT

Cutaneous and visceral leishmaniasis are public health problems in Africa, Asia, Europe, and America. The treatment has a high cost and toxicity. Thus, this work aims to evaluate the leishmanicidal activity of alpha-bisabolol and its three synthetic derivatives, P1, P2, and P3, on the promastigotes and amastigotes Leishmania infantum and L. amazonensis forms. Alpha-bisabolol showed the lowest IC50 with 3.43 for L. amazonensis promastigotes, while P1 was the most toxic for L. infantum with an IC50 of 9.10. The derivative P3 was better for the amastigote form, with an IC50 of 3.39 for L. amazonensis. All the compounds effectively decreased the intracellular load of amastigote and its ability to turn promastigote again. Thus, alpha-bisabolol and its three synthetic derivatives were effective in their leishmanicidal activity. Therefore, it can be an option for developing new treatments against leishmaniasis.

3.
Front Oncol ; 13: 1218989, 2023.
Article in English | MEDLINE | ID: mdl-37817771

ABSTRACT

Introduction: Constitutive activation of NOTCH1-wild-type (NT1-WT) signaling is associated with poor outcomes in chronic lymphocytic leukemia (CLL), and NOTCH1 mutation (c.7541_7542delCT), which potentiates NOTCH1 signaling, worsens the prognosis. However, the specific mechanisms of NOTCH1 deregulation are still poorly understood. Accumulative evidence mentioned endoplasmic reticulum (ER) stress/unfolded protein response (UPR) as a key targetable pathway in CLL. In this study, we investigated the impact of NOTCH1 deregulation on CLL cell response to ER stress induction, with the aim of identifying new therapeutic opportunities for CLL. Methods: We performed a bioinformatics analysis of NOTCH1-mutated (NT1-M) and NT1-WT CLL to identify differentially expressed genes (DEGs) using the rank product test. Quantitative real-time polymerase chain reaction (qPCR), Western blotting, cytosolic Ca2+, and annexin V/propidium iodide (PI) assay were used to detect curcumin ER stress induction effects. A median-effect equation was used for drug combination tests. The experimental mouse model Eµ-TCL1 was used to evaluate the impact of ER stress exacerbation by curcumin treatment on the progression of leukemic cells and NOTCH1 signaling. Results and discussion: Bioinformatics analysis revealed gene enrichment of the components of the ER stress/UPR pathway in NT1-M compared to those in NT1-WT CLL. Ectopic expression of NOTCH1 mutation upregulated the levels of ER stress response markers in the PGA1 CLL cell line. Primary NT1-M CLL was more sensitive to curcumin as documented by a significant perturbation in Ca2+ homeostasis and higher expression of ER stress/UPR markers compared to NT1-WT cells. It was also accompanied by a significantly higher apoptotic response mediated by C/EBP homologous protein (CHOP) expression, caspase 4 cleavage, and downregulation of NOTCH1 signaling in NT1-M CLL cells. Curcumin potentiated the apoptotic effect of venetoclax in NT1-M CLL cells. In Eµ-TCL1 leukemic mice, the administration of curcumin activated ER stress in splenic B cells ex vivo and significantly reduced the percentage of CD19+/CD5+ cells infiltrating the spleen, liver, and bone marrow (BM). These cellular effects were associated with reduced NOTCH1 activity in leukemic cells and resulted in prolonged survival of curcumin-treated mice. Overall, our results indicate that ER stress induction in NT1-M CLL might represent a new therapeutic opportunity for these high-risk CLL patients and improve the therapeutic effect of drugs currently used in CLL.

4.
Cancers (Basel) ; 15(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37509279

ABSTRACT

BACKGROUND: Chronic lymphocytic leukemia (CLL) is an incurable disorder associated with alterations in several pathways essential for survival and proliferation. Despite the advances made in CLL therapy with the new target agents, in some cases, relapses and resistance could occur, making the discovery of new alternatives to manage CLL refractoriness necessary. To provide new therapeutic strategies for CLL, we investigated the anti-leukemic activity of silver nanoparticles (AgNPs), whose impact on CLL cells has been poorly explored. METHODS: We studied the action mechanisms of AgNPs in vitro through flow cytometry and molecular analyses. To improve the bioavailability of AgNPs, we generated AgNPs coated with the anti-CD20 antibody Rituximab (AgNPs@Rituximab) and carried out imaging-based approaches and in vivo experiments to evaluate specificity, drug uptake, and efficacy. RESULTS: AgNPs reduced the viability of primary CLL cells and the HG-3 cell line by inducing an intrinsic apoptotic pathway characterized by Bax/Bcl-2 imbalance, caspase activation, and PARP degradation. Early apoptotic events triggered by AgNPs included enhanced Ca2+ influx and ROS overproduction. AgNPs synergistically potentiated the cytotoxicity of Venetoclax, Ibrutinib, and Bepridil. In vitro, the AgNPs@Rituximab conjugates were rapidly internalized within CLL cells and strongly prolonged the survival of CLL xenograft models compared to each unconjugated single agent. CONCLUSIONS: AgNPs showed strong anti-leukemic activity in CLL, with the potential for clinical translation in combination with agents used in CLL. The increased specificity of AgNPs@Rituximab toward CLL cells could be relevant for overcoming in vivo AgNPs' non-specific distribution and increasing their efficacy.

5.
Br J Haematol ; 201(1): 45-57, 2023 04.
Article in English | MEDLINE | ID: mdl-36484163

ABSTRACT

In chronic lymphocytic leukaemia (CLL) the efficacy of SARS-CoV-2 vaccination remains unclear as most studies have focused on humoral responses. Here we comprehensively examined humoral and cellular responses to vaccine in CLL patients. Seroconversion was observed in 55.2% of CLL with lower rate and antibody titres in treated patients. T-cell responses were detected in a significant fraction of patients. CD4+ and CD8+ frequencies were significantly increased independent of serology with higher levels of CD4+ cells in patients under a Bruton tyrosine kinase (BTK) or a B-cell lymphoma 2 (BCL-2) inhibitor. Vaccination skewed CD8+ cells towards a highly cytotoxic phenotype, more pronounced in seroconverted patients. A high proportion of patients showed spike-specific CD4+ and CD8+ cells producing interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα). Patients under a BTK inhibitor showed increased production of IFNγ and TNFα by CD4+ cells. Vaccination induced a Th1 polarization reverting the Th2 CLL T-cell profile in the majority of patients with lower IL-4 production in untreated and BTK-inhibitor-treated patients. Such robust T-cell responses may have contributed to remarkable protection against hospitalization and death in a cohort of 540 patients. Combining T-cell metrics with seroprevalence may yield a more accurate measure of population immunity in CLL, providing consequential insights for public health.


Subject(s)
Antineoplastic Agents , COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Vaccines , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , COVID-19 Vaccines/therapeutic use , Tumor Necrosis Factor-alpha , SARS-CoV-2 , Seroepidemiologic Studies , COVID-19/prevention & control , Antineoplastic Agents/therapeutic use , Interferon-gamma
6.
Cell Death Dis ; 13(9): 755, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050315

ABSTRACT

NOTCH1 alterations have been associated with chronic lymphocytic leukemia (CLL), but the molecular mechanisms underlying NOTCH1 activation in CLL cells are not completely understood. Here, we show that GSK3ß downregulates the constitutive levels of the active NOTCH1 intracellular domain (N1-ICD) in CLL cells. Indeed, GSK3ß silencing by small interfering RNA increases N1-ICD levels, whereas expression of an active GSK3ß mutant reduces them. Additionally, the GSK3ß inhibitor SB216763 enhances N1-ICD stability at a concentration at which it also increases CLL cell viability. We also show that N1-ICD is physically associated with GSK3ß in CLL cells. SB216763 reduces GSK3ß/N1-ICD interactions and the levels of ubiquitinated N1-ICD, indicating a reduction in N1-ICD proteasomal degradation when GSK3ß is less active. We then modulated the activity of two upstream regulators of GSK3ß and examined the impact on N1-ICD levels and CLL cell viability. Specifically, we inhibited AKT that is a negative regulator of GSK3ß and is constitutively active in CLL cells. Furthermore, we activated the protein phosphatase 2 A (PP2A) that is a positive regulator of GSK3ß, and has an impaired activity in CLL. Results show that either AKT inhibition or PP2A activation reduce N1-ICD expression and CLL cell viability in vitro, through mechanisms mediated by GSK3ß activity. Notably, for PP2A activation, we used the highly specific activator DT-061, that also reduces leukemic burden in peripheral blood, spleen and bone marrow in the Eµ-TCL1 adoptive transfer model of CLL, with a concomitant decrease in N1-ICD expression. Overall, we identify in GSK3ß a key component of the network regulating N1-ICD stability in CLL, and in AKT and PP2A new druggable targets for disrupting NOTCH1 signaling with therapeutic potential.


Subject(s)
Glycogen Synthase Kinase 3 beta , Leukemia, Lymphocytic, Chronic, B-Cell , Receptor, Notch1 , Cell Survival/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Protein Phosphatase 2/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
7.
Front Oncol ; 11: 668573, 2021.
Article in English | MEDLINE | ID: mdl-34123837

ABSTRACT

NOTCH1 mutations and deregulated signal have been commonly found in chronic lymphocytic leukemia (CLL) patients. Whereas the impact of NOTCH1 mutations on clinical course of CLL has been widely studied, the prognostic role of NOTCH1 activation in CLL remains to be defined. Here, we analyzed the activation of NOTCH1/NOTCH2 (ICN1/ICN2) and the expression of JAGGED1 (JAG1) in 163 CLL patients and evaluated their impact on TTFT (Time To First Treatment) and OS (Overall Survival). NOTCH1 activation (ICN1+) was found in 120/163 (73.6%) patients. Among them, 63 (52.5%) were NOTCH1 mutated (ICN1+/mutated) and 57 (47.5%) were NOTCH1 wild type (ICN1+/WT). ICN1+ patients had a significant reduction of TTFT compared to ICN1-negative (ICN1-). In the absence of NOTCH1 mutations, we found that the ICN1+/WT group had a significantly reduced TTFT compared to ICN1- patients. The analysis of IGHV mutational status showed that the distribution of the mutated/unmutated IGHV pattern was similar in ICN1+/WT and ICN1- patients. Additionally, TTFT was significantly reduced in ICN1+/ICN2+ and ICN1+/JAG1+ patients compared to ICN1-/ICN2- and ICN1-/JAG1- groups. Our data revealed for the first time that NOTCH1 activation is a negative prognosticator in CLL and is not correlated to NOTCH1 and IGHV mutational status. Activation of NOTCH2 and JAGGED1 expression might also influence clinical outcomes in this group, indicating the need for further dedicated studies. The evaluation of different NOTCH network components might represent a new approach to refine CLL risk stratification.

8.
Clin Cancer Res ; 25(24): 7540-7553, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31578228

ABSTRACT

PURPOSE: Ibrutinib, a Bruton tyrosine kinase inhibitor (BTKi), has improved the outcomes of chronic lymphocytic leukemia (CLL), but primary resistance or relapse are issues of increasing significance. While the predominant mechanism of action of BTKi is the B-cell receptor (BCR) blockade, many off-target effects are unknown. We investigated potential interactions between BCR pathway and NOTCH1 activity in ibrutinib-treated CLL to identify new mechanisms of therapy resistance and markers to monitor disease response. EXPERIMENTAL DESIGN: NOTCH activations was evaluated either in vitro and ex vivo in CLL samples after ibrutinib treatment by Western blotting. Confocal proximity ligation assay (PLA) experiments and analyses of down-targets of NOTCH1 by qRT-PCR were used to investigate the cross-talk between BTK and NOTCH1. RESULTS: In vitro ibrutinib treatment of CLL significantly reduced activated NOTCH1/2 and induced dephosphorylation of eIF4E, a NOTCH target in CLL. BCR stimulation increased the expression of activated NOTCH1 that accumulated in the nucleus leading to HES1, DTX1, and c-MYC transcription. Results of in situ PLA experiments revealed the presence of NOTCH1-ICD/BTK complexes, whose number was reduced after ibrutinib treatment. In ibrutinib-treated CLL patients, leukemic cells showed NOTCH1 activity downregulation that deepened over time. The NOTCH1 signaling was restored at relapse and remained activated in ibrutinib-resistant CLL cells. CONCLUSIONS: We demonstrated a strong clinical activity of ibrutinib in a real-life context. The ibrutinib clinical efficacy was associated with NOTCH1 activity downregulation that deepened over time. Our data point to NOTCH1 as a new molecular partner in BCR signaling with potential to further improve CLL-targeted treatments.


Subject(s)
Apoptosis , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptor, Notch1/metabolism , Receptors, Antigen, B-Cell/metabolism , Adenine/analogs & derivatives , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Piperidines , Protein Kinase Inhibitors/pharmacology , Receptor, Notch1/genetics , Receptors, Antigen, B-Cell/genetics , Signal Transduction , Treatment Outcome , Tumor Cells, Cultured
9.
Front Oncol ; 8: 105, 2018.
Article in English | MEDLINE | ID: mdl-29732315

ABSTRACT

To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1-mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

10.
Vaccine ; 34(30): 3493-9, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27091687

ABSTRACT

Staphylococcus aureus (S. aureus) is a Gram-positive coccal bacterium comprising part of the human skin, nares and gastrointestinal tract normal microbiota. It is also an important cause of nosocomial/community-acquired infections in humans and animals, which can cause a diverse array of infections, including sepsis, which is a progressive systemic inflammation response syndrome that is frequently fatal. The emergence of drug-resistant strains and the high toxicity of the treatments used for these infections point out the need to develop an effective, inexpensive and safe vaccine that can be used prophylactically. In this work, we used an experimental sepsis model to evaluate the effectiveness of whole antigens from S. aureus (SaAg) given by the intranasal route to induce protective immunity against S. aureus infection in mice. BALB/c mice were vaccinated via intranasal or intramuscular route with two doses of SaAg, followed by biocompatibility and immunogenicity evaluations. Vaccinated animals did not show any adverse effects associated with the vaccine, as determined by transaminase and creatinine measurements. Intranasal, but not intramuscular vaccination with SaAg led to a significant reduction in IL-10 production and was associated with increased level of IFN-γ and NO. SaAg intranasal vaccination was able to prime cellular and humoral immune responses and inducing a higher proliferation index and increased production of specific IgG1/IgG2, which contributed to decrease the bacterial load in both liver and the spleen and improve survival during sepsis. These findings present the first evidence of the effectiveness of whole Ag intranasal-based vaccine administration, which expands the vaccination possibilities against S. aureus infection.


Subject(s)
Antigens, Bacterial/immunology , Sepsis/prevention & control , Staphylococcal Infections/prevention & control , Staphylococcal Vaccines/immunology , Administration, Intranasal , Animals , Antibodies, Bacterial/blood , Bacterial Load , Female , Immunoglobulin G/blood , Interferon-gamma/immunology , Interleukin-10/immunology , Liver/immunology , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Spleen/immunology , Staphylococcal Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...