Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Nanoscale ; 16(3): 1206-1222, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38113123

ABSTRACT

Molecular aggregates exhibit emergent properties, including the collective sharing of electronic excitation energy known as exciton delocalization, that can be leveraged in applications such as quantum computing, optical information processing, and light harvesting. In a previous study, we found unexpectedly large excitonic interactions (quantified by the excitonic hopping parameter Jm,n) in DNA-templated aggregates of squaraine (SQ) dyes with hydrophilic-imparting sulfo and butylsulfo substituents. Here, we characterize DNA Holliday junction (DNA-HJ) templated aggregates of an expanded set of SQs and evaluate their optical properties in the context of structural heterogeneity. Specifically, we characterized the orientation of and Jm,n between dyes in dimer aggregates of non-chlorinated and chlorinated SQs. Three new chlorinated SQs that feature a varying number of butylsulfo substituents were synthesized and attached to a DNA-HJ via a covalent linker to form adjacent and transverse dimers. Various characteristics of the dye, including its hydrophilicity (in terms of log Po/w) and surface area, and of the substituents, including their local bulkiness and electron withdrawing capacity, were quantified computationally. The orientation of and Jm,n between the dyes were estimated using a model based on Kühn-Renger-May theory to fit the absorption and circular dichroism spectra. The results suggested that adjacent dimer aggregates of all the non-chlorinated and of the most hydrophilic chlorinated SQ dyes exhibit heterogeneity; that is, they form a mixture of dimers subpopulations. A key finding of this work is that dyes with a higher hydrophilicity (lower log Po/w) formed dimers with smaller Jm,n and large center-to-center dye distance (Rm,n). Also, the results revealed that the position of the dye in the DNA-HJ template, that is, adjacent or transverse, impacted Jm,n. Lastly, we found that Jm,n between symmetrically substituted dyes was reduced by increasing the local bulkiness of the substituent. This work provides insights into how to maintain strong excitonic coupling and identifies challenges associated with heterogeneity, which will help to improve control of these dye aggregates and move forward their potential application as quantum information systems.


Subject(s)
Cyclobutanes , DNA, Cruciform , Fluorescent Dyes , Phenols , Fluorescent Dyes/chemistry , Computing Methodologies , Quantum Theory , DNA/chemistry , Hydrophobic and Hydrophilic Interactions
2.
Biochemistry ; 62(22): 3234-3244, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37906841

ABSTRACT

Programmable self-assembly of dyes using DNA templates to promote exciton delocalization in dye aggregates is gaining considerable interest. New methods to improve the rigidity of the DNA scaffold and thus the stability of the molecular dye aggregates to encourage exciton delocalization are desired. In these dye-DNA constructs, one potential way to increase the stability of the aggregates is to create an additional covalent bond via photo-cross-linking reactions between thymines in the DNA scaffold. Specifically, we report an approach to increase the yield of photo-cross-linking reaction between thymines in the core of a DNA Holliday junction while limiting the damage from UV irradiation to DNA. We investigated the effect of the distance between thymines on the photo-cross-linking reaction yields by using linkers with different lengths to tether the dyes to the DNA templates. By comprehensively evaluating the photo-cross-linking reaction yields of dye-DNA aggregates using linkers with different lengths, we conclude that interstrand thymines tend to photo-cross-link more efficiently with short linkers. A higher cross-linking yield was achieved due to the shorter intermolecular distance between thymines influenced by strong dye-dye interactions. Our method establishes the possibility of improving the stability of DNA-scaffolded dye aggregates, thereby expanding their use in exciton-based applications such as light harvesting, nanoscale computing, quantum computing, and optoelectronics.


Subject(s)
DNA, Cruciform , Thymine , Computing Methodologies , Quantum Theory , DNA/chemistry , Coloring Agents
3.
Molecules ; 28(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36903409

ABSTRACT

Aggregates of organic dyes that exhibit excitonic coupling have a wide array of applications, including medical imaging, organic photovoltaics, and quantum information devices. The optical properties of a dye monomer, as a basis of dye aggregate, can be modified to strengthen excitonic coupling. Squaraine (SQ) dyes are attractive for those applications due to their strong absorbance peak in the visible range. While the effects of substituent types on the optical properties of SQ dyes have been previously examined, the effects of various substituent locations have not yet been investigated. In this study, density functional theory (DFT) and time-dependent density functional theory (TD-DFT) were used to investigate the relationships between SQ substituent location and several key properties of the performance of dye aggregate systems, namely, difference static dipole (Δd), transition dipole moment (µ), hydrophobicity, and the angle (θ) between Δd and µ. We found that attaching substituents along the long axis of the dye could increase µ while placement off the long axis was shown to increase Δd and reduce θ. The reduction in θ is largely due to a change in the direction of Δd as the direction of µ is not significantly affected by substituent position. Hydrophobicity decreases when electron-donating substituents are located close to the nitrogen of the indolenine ring. These results provide insight into the structure-property relationships of SQ dyes and guide the design of dye monomers for aggregate systems with desired properties and performance.

4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835471

ABSTRACT

Dye molecules, arranged in an aggregate, can display excitonic delocalization. The use of DNA scaffolding to control aggregate configurations and delocalization is of research interest. Here, we applied Molecular Dynamics (MD) to gain an insight on how dye-DNA interactions affect excitonic coupling between two squaraine (SQ) dyes covalently attached to a DNA Holliday junction (HJ). We studied two types of dimer configurations, i.e., adjacent and transverse, which differed in points of dye covalent attachments to DNA. Three structurally different SQ dyes with similar hydrophobicity were chosen to investigate the sensitivity of excitonic coupling to dye placement. Each dimer configuration was initialized in parallel and antiparallel arrangements in the DNA HJ. The MD results, validated by experimental measurements, suggested that the adjacent dimer promotes stronger excitonic coupling and less dye-DNA interaction than the transverse dimer. Additionally, we found that SQ dyes with specific functional groups (i.e., substituents) facilitate a closer degree of aggregate packing via hydrophobic effects, leading to a stronger excitonic coupling. This work advances a fundamental understanding of the impacts of dye-DNA interactions on aggregate orientation and excitonic coupling.


Subject(s)
DNA, Cruciform , Molecular Dynamics Simulation , Fluorescent Dyes/chemistry , DNA/chemistry
5.
J Phys Chem A ; 127(5): 1141-1157, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36705555

ABSTRACT

Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized. The dyes were covalently tethered to DNA Holliday junctions to suppress aggregation and permit characterization of their monomer photophysics. A combination of density functional theory and steady-state absorption spectroscopy shows that the difference static dipole moment (Δd) successively increases with the addition of these substituents while simultaneously maintaining a large transition dipole moment (µ). Steady-state fluorescence and time-resolved absorption and fluorescence spectroscopies uncover a significant nonradiative decay pathway in the asymmetrically substituted dyes that drastically reduces their excited-state lifetime (τ). This work indicates that Δd can indeed be increased by functionalizing dyes with electron donating and withdrawing substituents and that, in certain classes of dyes such as these asymmetric squaraines, strategies may be needed to ensure long τ, e.g., by rigidifying the π-conjugated network.

6.
Molecules ; 27(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35684394

ABSTRACT

Dye aggregates are of interest for excitonic applications, including biomedical imaging, organic photovoltaics, and quantum information systems. Dyes with large transition dipole moments (µ) are necessary to optimize coupling within dye aggregates. Extinction coefficients (ε) can be used to determine the µ of dyes, and so dyes with a large ε (>150,000 M−1cm−1) should be engineered or identified. However, dye properties leading to a large ε are not fully understood, and low-throughput methods of dye screening, such as experimental measurements or density functional theory (DFT) calculations, can be time-consuming. In order to screen large datasets of molecules for desirable properties (i.e., large ε and µ), a computational workflow was established using machine learning (ML), DFT, time-dependent (TD-) DFT, and molecular dynamics (MD). ML models were developed through training and validation on a dataset of 8802 dyes using structural features. A Classifier was developed with an accuracy of 97% and a Regressor was constructed with an R2 of above 0.9, comparing between experiment and ML prediction. Using the Regressor, the ε values of over 18,000 dyes were predicted. The top 100 dyes were further screened using DFT and TD-DFT to identify 15 dyes with a µ relative to a reference dye, pentamethine indocyanine dye Cy5. Two benchmark MD simulations were performed on Cy5 and Cy5.5 dimers, and it was found that MD could accurately capture experimental results. The results of this study exhibit that our computational workflow for identifying dyes with a large µ for excitonic applications is effective and can be used as a tool to develop new dyes for excitonic applications.


Subject(s)
Coloring Agents , Molecular Dynamics Simulation , Coloring Agents/chemistry , DNA/chemistry , DNA Replication
7.
J Phys Chem C Nanomater Interfaces ; 126(7): 3475-3488, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35242270

ABSTRACT

Control over the strength of excitonic coupling in molecular dye aggregates is a substantial factor for the development of technologies such as light harvesting, optoelectronics, and quantum computing. According to the molecular exciton model, the strength of excitonic coupling is inversely proportional to the distance between dyes. Covalent DNA templating was proved to be a versatile tool to control dye spacing on a subnanometer scale. To further expand our ability to control photophysical properties of excitons, here, we investigated the influence of dye hydrophobicity on the strength of excitonic coupling in squaraine aggregates covalently templated by DNA Holliday Junction (DNA HJ). Indolenine squaraines were chosen for their excellent spectral properties, stability, and diversity of chemical modifications. Six squaraines of varying hydrophobicity from highly hydrophobic to highly hydrophilic were assembled in two dimer configurations and a tetramer. In general, the examined squaraines demonstrated a propensity toward face-to-face aggregation behavior observed via steady-state absorption, fluorescence, and circular dichroism spectroscopies. Modeling based on the Kühn-Renger-May approach quantified the strength of excitonic coupling in the squaraine aggregates. The strength of excitonic coupling strongly correlated with squaraine hydrophobic region. Dimer aggregates of dichloroindolenine squaraine were found to exhibit the strongest coupling strength of 132 meV (1065 cm-1). In addition, we identified the sites for dye attachment in the DNA HJ that promote the closest spacing between the dyes in their dimers. The extracted aggregate geometries, and the role of electrostatic and steric effects in squaraine aggregation are also discussed. Taken together, these findings provide a deeper insight into how dye structures influence excitonic coupling in dye aggregates covalently templated via DNA, and guidance in design rules for exciton-based materials and devices.

8.
RSC Adv ; 11(31): 19029-19040, 2021 May 24.
Article in English | MEDLINE | ID: mdl-35478639

ABSTRACT

Dye molecules that absorb light in the visible region are key components in many applications, including organic photovoltaics, biological fluorescent labeling, super-resolution microscopy, and energy transport. One family of dyes, known as squaraines, has received considerable attention recently due to their favorable electronic and photophysical properties. In addition, these dyes have a strong propensity for aggregation, which results in emergent materials properties, such as exciton delocalization. This will be of benefit in charge separation and energy transport along with fundamental studies in quantum information. Given the high structural tunability of squaraine dyes, it is possible that exciton delocalization could be tailored by modifying the substituents attached to the π-conjugated network. To date, limited theoretical studies have explored the role of substituent effects on the electronic and photophysical properties of squaraines in the context of DNA-templated dye aggregates and resultant excitonic behavior. We used ab initio theoretical methods to determine the effects of substituents on the electronic and photophysical properties for a series of nine different squaraine dyes. Solvation free energy was also investigated as an insight into changes in hydrophobic behavior from substituents. The role of molecular symmetry on these properties was also explored via conformation and substitution. We found that substituent effects are correlated with the empirical Hammett constant, which demonstrates their electron donating or electron withdrawing strength. Electron withdrawing groups were found to impact solvation free energy, transition dipole moment, static dipole difference, and absorbance more than electron donating groups. All substituents showed a redshift in absorption for the squaraine dye. In addition, solvation free energy increases with Hammett constant. This work represents a first step toward establishing design rules for dyes with desired properties for excitonic applications.

9.
Rev.Fac.cienc. méd ; 1(2): 57-63, jul.-dic. 2004. graf
Article in Spanish | BIMENA | ID: bim-5206

ABSTRACT

Objetivos: estudiar las causas de la muerte materna en el departamento de Copán. Efectuar in tervenciones médicas sociales, de capacitación y de educación para disminuir su frecuencia en una observación de cinco años en mujeres de 12 a 49 años de edad en el período, de enero de 1999 a diciembre del 2003. METODOS: se realizó un estudio descriptivo de las causas principales de la mortalidad materna y se hizo hincapié en tres ejes fundamentales: 1.VIGILANCIA EPIDEMIOLOGICA de la mortalidad materna. 2.EDUCACION, con dos componentes: a)Capacitación del personal de salud para consensuar causas de mortalidad e intervenciones médicas y sociales necesarias para su disminución. b) Capacitación comunitaria a líderes comunales de la mayoría de aldeas y municipios con el objetivo de ayudar a identificar pacientes en peligro y elevar el nivel de conciencia de la población rural sobre el problema. 3. APOYO A LOS SERVICIOS DE SALUD, con intervenciones en el manejo de emergencia obstétrica, medicamentos básicos para esas emergencias y mejoramiento en la red de servicios creando una nueva clínica de atención materna en la zona rural . RESULTADOS: La obtención de datos nos demuestra que hubo mejoría en la razón de la mortalidad materna, especialmente en el renglón de hemorragias, infecciones y pre-eclampsia-eclampsia, con el uso adecuado de antibiótico y el manejo activo del tercer período del parto (aplicando oxiticina con la salida del hombro anterior en el momento del parto. La mejoría fue más obvia en el Hospital de Occidente y la declinación de la razón de mortalidad es menos notoria en la zona rural, aunque en esta última es más evidente


Subject(s)
Humans , Female , Adolescent , Adult , Middle Aged , Maternal Mortality/trends , Maternal Health Services/methods , Maternal Health Services/organization & administration , Public Health/statistics & numerical data , Epidemiological Monitoring , Inservice Training
SELECTION OF CITATIONS
SEARCH DETAIL
...