Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 138(2): 1090-101, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26328724

ABSTRACT

Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80-100 cm wide and 2-4 m long. Using the two-choice Y-shaped paradigm to compensate for left-right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18-35 dB weaker than overlapping echoes from surrounding chains.


Subject(s)
Chiroptera/physiology , Echolocation , Flight, Animal/physiology , Signal-To-Noise Ratio , Animals , Female , Male , Maze Learning , Spatial Memory , Video Recording
2.
J Exp Biol ; 216(Pt 6): 1053-63, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23447667

ABSTRACT

The big brown bat, Eptesicus fuscus, uses echolocation for foraging and orientation. The limited operating range of biosonar implies that bats must rely upon spatial memory in familiar spaces with dimensions larger than a few meters. Prior experiments with bats flying in obstacle arrays have revealed differences in flight and acoustic emission patterns depending on the density and spatial extent of the obstacles. Using the same method, combined with acoustic microphone array tracking, we flew big brown bats in an obstacle array that varied in density and distribution in different locations in the flight room. In the initial experiment, six bats learned individually stereotyped flight patterns as they became familiar with the space. After the first day, the repetition rate of sonar broadcasts dropped to a stable level, consistent with low-density clutter. In a second experiment, after acquiring their stable paths, each bat was released from each of two unfamiliar locations in the room. Each bat still followed the same flight path it learned originally. In a third experiment, performed 1 month after the first two experiments, three of the bats were re-flown in the same configuration of obstacles; these three resumed flying in their accustomed path. The other three bats were flown in a mirror-image reconfiguration of the obstacles; these bats quickly found stable flight paths that differed from their originally learned paths. Overall, the flight patterns indicate that the bats perceive the cluttered space as a single scene through which they develop globally organized flight paths.


Subject(s)
Chiroptera/physiology , Environment , Flight, Animal/physiology , Learning/physiology , Memory/physiology , Space Perception/physiology , Animals , Echolocation/physiology , Psychomotor Performance
3.
J Neurophysiol ; 99(3): 1545-53, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18171710

ABSTRACT

We report the first optical recordings of action potentials, in single trials, from one or a few (approximately 1-2 microm) mammalian nerve terminals in an intact in vitro preparation, the mouse neurohypophysis. The measurements used two-photon excitation along the "blue" edge of the two-photon absorption spectrum of di-3-ANEPPDHQ (a fluorescent voltage-sensitive naphthyl styryl-pyridinium dye), and epifluorescence detection, a configuration that is critical for noninvasive recording of electrical activity from intact brains. Single-trial recordings of action potentials exhibited signal-to-noise ratios of approximately 5:1 and fractional fluorescence changes of up to approximately 10%. This method, by virtue of its optical sectioning capability, deep tissue penetration, and efficient epifluorescence detection, offers clear advantages over linear, as well as other nonlinear optical techniques used to monitor voltage changes in localized neuronal regions, and provides an alternative to invasive electrode arrays for studying neuronal systems in vivo.


Subject(s)
Action Potentials/physiology , Fluorescence , Fluorescent Dyes/pharmacology , Neurons/cytology , Presynaptic Terminals/drug effects , Pyridinium Compounds/pharmacology , Action Potentials/drug effects , Animals , Female , In Vitro Techniques , Mice , Microscopy, Electron, Transmission/methods , Neurons/drug effects , Neurons/physiology , Pituitary Gland, Intermediate/cytology , Presynaptic Terminals/ultrastructure , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...