Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Cell Commun Signal ; 18(1): 10, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941500

ABSTRACT

The establishment of parasitic infection is dependent on the development of efficient strategies to evade the host defense mechanisms. Phosphatidylserine (PS) molecules are pivotal for apoptotic cell recognition and clearance by professional phagocytes. Moreover, PS receptors are able to trigger anti-inflammatory and immunosuppressive responses by phagocytes, either by coupled enzymes or through the induction of regulatory cytokine secretion. These PS-dependent events are exploited by parasites in a mechanism called apoptotic mimicry. Generally, apoptotic mimicry refers to the effects of PS recognition for the initiation and maintenance of pathogenic infections. However, in this context, PS molecules can be recognized on the surface of the infectious agent or in the surface of apoptotic host debris, leading to the respective denomination of classical and non-classical apoptotic mimicry. In this review, we discuss the role of PS in the pathogenesis of several human infections caused by protozoan parasites. Video Abstract.


Subject(s)
Apoptosis , Host-Parasite Interactions , Parasites/metabolism , Parasitic Diseases/metabolism , Parasitic Diseases/parasitology , Phosphatidylserines/metabolism , Animals , Humans
2.
Article in English | MEDLINE | ID: mdl-31032234

ABSTRACT

Leishmania amazonensis amastigotes can make use of surface-exposed phosphatidylserine (PS) molecules to promote infection and non-classical activation of macrophages (MΦ), leading to uncontrolled intracellular proliferation of the parasites. This mechanism was quoted as apoptotic mimicry. Moreover, the amount of PS molecules exposed on the surface of amastigotes correlates with the susceptibility of the host. In this study, we tested whether host cellular responses influence PS expression on intracellular amastigotes. We found that the level of PS exposure on intracellular amastigotes was modulated by CD4+ T cell and MΦ activation status in vitro and in vivo. L. amazonensis infection generated a Th1/Th2-mixed cytokine profile, providing the optimal MΦ stimulation that favored PS exposure on intracellular amastigotes. Maintenance of PS exposed on the parasite was dependent on low, but sustained, levels of nitric oxide and polyamine production. Amastigotes obtained from lymphopenic nude mice did not expose PS on their surface, and adoptive transfer of CD4+ T cells reversed this phenotype. In addition, histopathological analysis of mice treated with anti-PS antibodies showed increased inflammation and similarities to nude mouse lesions. Collectively, our data confirm the role of pathogenic CD4+ T cells for disease progression and point to PS as a critical parasite strategy to subvert host immune responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Host-Pathogen Interactions , Leishmania mexicana/immunology , Leishmania mexicana/metabolism , Leishmaniasis/immunology , Macrophage Activation , Phosphatidylserines/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Leishmaniasis/pathology , Mice , Mice, Nude , Th1 Cells/immunology , Th2 Cells/immunology
3.
Article in English | MEDLINE | ID: mdl-30186314

ABSTRACT

BACKGROUND: Autologous whole blood (AWB) administration is described as alternative/complementary medical practice widely employed in medical and veterinary therapy against infections, chronic pathologies and neoplasias. Our aim is to investigate in vivo biological effect of AWB using healthy murine models under the course of Trypanosoma cruzi acute infection. METHODS: The first set of studies consisted of injecting different volumes of AWB and saline (SAL) into the posterior region of quadriceps muscle of healthy male Swiss mice under distinct therapeutic schemes evaluating: animal behavior, body and organ weight, hemogram, plasmatic biochemical markers for tissue damage and inflammatory cytokine levels and profile. To assess the impact on the experimental T. cruzi infection, different schemes (prior and post infection) and periods of AWB administration (from one up to 10 days) were conducted, also employing heterologous whole blood (HWB) and evaluating plasma cytokine profile. RESULTS: No major adverse events were observed in healthy AWB-treated mice, except gait impairment in animals that received three doses of 20 µL AWB in the same hind limb. AWB and SAL triggered an immediate polymorphonuclear response followed by mononuclear infiltrate. Although SAL triggered an inflammatory response, the kinetics and intensity of the histological profile and humoral mediator levels were different from AWB, the latter occurring earlier and more intensely with concomitant elevation of plasma IL-6. Inflammatory peak response of SAL, mainly composed of mononuclear cells with IL-10, was increased at 24 h. According to the mouse model of acute T. cruzi infection, only minor decreases (< 30%) in the parasitemia levels were produced by AWB and HWB given before and after infection, without protecting against mortality. Rises in IFN-gamma, TNF-alpha and IL-6 were detected at 9 dpi in all infected animals as compared to uninfected mice but only Bz displayed a statistically significant diminution (p = 0.02) in TNF-alpha levels than infected and untreated mice. CONCLUSIONS: This study revealed that the use of autologous whole blood (AWB) in the acute model employed was unable to reduce the parasitic load of infected mice, providing only a minor decrease in parasitemia levels (up to 30%) but without protecting against animal mortality. Further in vivo studies will be necessary to elucidate the effective impact of this procedure.

4.
J. venom. anim. toxins incl. trop. dis ; 24: 1-20, 2018. ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1484754

ABSTRACT

Background: Autologous whole blood (AWB) administration is described as alternative/complementary medical practice widely employed in medical and veterinary therapy against infections, chronic pathologies and neoplasias. Our aim is to investigate in vivo biological effect of AWB using healthy murine models under the course of Trypanosoma cruzi acute infection. Methods: The first set of studies consisted of injecting different volumes of AWB and saline (SAL) into the posterior region of quadriceps muscle of healthy male Swiss mice under distinct therapeutic schemes evaluating: animal behavior, body and organ weight, hemogram, plasmatic biochemical markers for tissue damage and inflammatory cytokine levels and profile. To assess the impact on the experimental T. cruzi infection, different schemes (prior and post infection) and periods of AWB administration (from one up to 10 days) were conducted, also employing heterologous whole blood (HWB) and evaluating plasma cytokine profile. Results: No major adverse events were observed in healthy AWB-treated mice, except gait impairment in animals that received three doses of 20 L AWB in the same hind limb. AWB and SAL triggered an immediate polymorphonuclear response followed by mononuclear infiltrate. Although SAL triggered an inflammatory response, the kinetics and intensity of the histological profile and humoral mediator levels were different from AWB, the latter occurring earlier and more intensely with concomitant elevation of plasma IL-6. Inflammatory peak response of SAL, mainly composed of mononuclear cells with IL-10, was increased at 24 h. According to the mouse model of acute T. cruzi infection, only minor decreases ( 30%) in the parasitemia levels were produced by AWB and HWB given before and after infection, without protecting against mortality. Rises in IFN-gamma, TNF-alpha and...


Subject(s)
Animals , Mice , Autoantigens/therapeutic use , Blood Transfusion, Autologous , Trypanosoma cruzi
5.
J. venom. anim. toxins incl. trop. dis ; 24: 25, 2018. graf, ilus
Article in English | LILACS | ID: biblio-954850

ABSTRACT

Autologous whole blood (AWB) administration is described as alternative/complementary medical practice widely employed in medical and veterinary therapy against infections, chronic pathologies and neoplasias. Our aim is to investigate in vivo biological effect of AWB using healthy murine models under the course of Trypanosoma cruzi acute infection. Methods: The first set of studies consisted of injecting different volumes of AWB and saline (SAL) into the posterior region of quadriceps muscle of healthy male Swiss mice under distinct therapeutic schemes evaluating: animal behavior, body and organ weight, hemogram, plasmatic biochemical markers for tissue damage and inflammatory cytokine levels and profile. To assess the impact on the experimental T. cruzi infection, different schemes (prior and post infection) and periods of AWB administration (from one up to 10 days) were conducted, also employing heterologous whole blood (HWB) and evaluating plasma cytokine profile. Results: No major adverse events were observed in healthy AWB-treated mice, except gait impairment in animals that received three doses of 20 µL AWB in the same hind limb. AWB and SAL triggered an immediate polymorphonuclear response followed by mononuclear infiltrate. Although SAL triggered an inflammatory response, the kinetics and intensity of the histological profile and humoral mediator levels were different from AWB, the latter occurring earlier and more intensely with concomitant elevation of plasma IL-6. Inflammatory peak response of SAL, mainly composed of mononuclear cells with IL-10, was increased at 24 h. According to the mouse model of acute T. cruzi infection, only minor decreases (< 30%) in the parasitemia levels were produced by AWB and HWB given before and after infection, without protecting against mortality. Rises in IFN-gamma, TNF-alpha and IL-6 were detected at 9 dpi in all infected animals as compared to uninfected mice but only Bz displayed a statistically significant diminution (p= 0.02) in TNF-alpha levels than infected and untreated mice. Conclusions: This study revealed that the use of autologous whole blood (AWB) in the acute model employed was unable to reduce the parasitic load of infected mice, providing only a minor decrease in parasitemia levels (up to 30%) but without protecting against animal mortality. Further in vivo studies will be necessary to elucidate the effective impact of this procedure.(AU)


Subject(s)
Animals , Male , Rats , Trypanosoma cruzi , Blood Transfusion, Autologous , Chagas Disease/blood , Complementary Therapies
6.
PLoS Negl Trop Dis ; 9(2): e0003411, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25692783

ABSTRACT

Leishmaniasis is an important disease that affects 12 million people in 88 countries, with 2 million new cases every year. Leishmania amazonensis is an important agent in Brazil, leading to clinical forms varying from localized (LCL) to diffuse cutaneous leishmaniasis (DCL). One interesting issue rarely analyzed is how host immune response affects Leishmania phenotype and virulence. Aiming to study the effect of host immune system on Leishmania proteins we compared proteomes of amastigotes isolated from BALB/c and BALB/c nude mice. The athymic nude mice may resemble patients with diffuse cutaneous leishmaniasis, considered T-cell hyposensitive or anergic to Leishmania's antigens. This work is the first to compare modifications in amastigotes' proteomes driven by host immune response. Among the 44 differentially expressed spots, there were proteins related to oxidative/nitrosative stress and proteases. Some correspond to known Leishmania virulence factors such as OPB and tryparedoxin peroxidase. Specific isoforms of these two proteins were increased in parasites from nude mice, suggesting that T cells probably restrain their posttranslational modifications in BALB/c mice. On the other hand, an isoform of HSP70 was increased in amastigotes from BALB/c mice. We believe our study may allow identification of potential virulence factors and ways of regulating their expression.


Subject(s)
HSP70 Heat-Shock Proteins/biosynthesis , Leishmania mexicana/metabolism , Leishmaniasis, Diffuse Cutaneous/parasitology , Peroxidases/biosynthesis , Protozoan Proteins/biosynthesis , Serine Endopeptidases/biosynthesis , T-Lymphocytes/immunology , Animals , Antigens, Protozoan/immunology , Brazil , Disease Models, Animal , Female , Humans , Leishmania mexicana/isolation & purification , Leishmania mexicana/pathogenicity , Leishmaniasis, Diffuse Cutaneous/immunology , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Isoforms/biosynthesis
7.
Mem Inst Oswaldo Cruz ; 108(6): 679-85, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24037188

ABSTRACT

Leishmania parasites expose phosphatidylserine (PS) on their surface, a process that has been associated with regulation of host's immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.


Subject(s)
Blood Coagulation/physiology , Leishmania/metabolism , Phosphatidylserines/metabolism , Psychodidae/parasitology , Saliva/metabolism , Animals , Anticoagulants/metabolism , Cysteine Endopeptidases , Factor V/antagonists & inhibitors , Factor X/antagonists & inhibitors , Factor Xa , Factor Xa Inhibitors , Humans , Insect Vectors/parasitology , Neoplasm Proteins/antagonists & inhibitors , Partial Thromboplastin Time , Phosphatidylcholines/metabolism , Psychodidae/metabolism , Thrombin/antagonists & inhibitors , Tissue Extracts/metabolism
8.
Mem. Inst. Oswaldo Cruz ; 108(6): 679-685, set. 2013. graf
Article in English | LILACS | ID: lil-685490

ABSTRACT

Leishmania parasites expose phosphatidylserine (PS) on their surface, a process that has been associated with regulation of host's immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.


Subject(s)
Animals , Humans , Blood Coagulation/physiology , Leishmania/metabolism , Phosphatidylserines/metabolism , Psychodidae/parasitology , Saliva/metabolism , Anticoagulants/metabolism , Cysteine Endopeptidases , Factor V/antagonists & inhibitors , Factor X/antagonists & inhibitors , Factor Xa/antagonists & inhibitors , Insect Vectors/parasitology , Neoplasm Proteins/antagonists & inhibitors , Partial Thromboplastin Time , Phosphatidylcholines/metabolism , Psychodidae/metabolism , Thrombin/antagonists & inhibitors , Tissue Extracts/metabolism
9.
Article in English | MEDLINE | ID: mdl-22912937

ABSTRACT

Apoptotic death and apoptotic mimicry are defined respectively as a non-accidental death and as the mimicking of an apoptotic-cell phenotype, usually by phosphatidylserine (PS) exposure. In the case of the murine infection by Leishmania spp, apoptotic death has been described in promastigotes and apoptotic mimicry in amastigotes. In both situations they are important events of the experimental murine infection by this parasite. In the present review we discuss what features we need to consider if we want to establish if a behavior shown by Leishmania is altruistic or not: does the behavior increases the fitness of organisms other than the one showing it? Does this behavior have a cost for the actor? If we manage to show that a given behavior is costly for the actor and beneficial for the recipient of the action, we will be able to establish it as altruistic. From this perspective, we can argue that apoptotic-like death and apoptotic mimicry are both altruistic with the latter representing a weaker altruistic behavior than the former.


Subject(s)
Apoptosis , Biological Evolution , Leishmania/physiology , Animals , Humans , Leishmania/pathogenicity , Mice
10.
PLoS One ; 7(5): e36595, 2012.
Article in English | MEDLINE | ID: mdl-22574191

ABSTRACT

Diffuse cutaneous leishmaniasis (DCL) is a rare clinical manifestation of leishmaniasis, characterized by an inefficient parasite-specific cellular response and heavily parasitized macrophages. In Brazil, Leishmania (Leishmania) amazonensis is the main species involved in DCL cases. In the experimental model, recognition of phosphatidylserine (PS) molecules exposed on the surface of amastigotes forms of L. amazonensis inhibits the inflammatory response of infected macrophages as a strategy to evade the host immune surveillance. In this study, we examined whether PS exposure on L. amazonensis isolates from DCL patients operated as a parasite pathogenic factor and as a putative suppression mechanism of immune response during the infection. Peritoneal macrophages from F1 mice (BALB/c×C57BL/6) were infected with different L. amazonensis isolates from patients with localized cutaneous leishmaniasis (LCL) or DCL. DCL isolates showed higher PS exposure than their counterparts from LCL patients. In addition, PS exposure was positively correlated with clinical parameters of the human infection (number of lesions and time of disease) and with characteristics of the experimental infection (macrophage infection and anti-inflammatory cytokine induction). Furthermore, parasites isolated from DCL patients displayed an increased area in parasitophorous vacuoles (PV) when compared to those isolated from LCL patients. Thus, this study shows for the first time that a parasite factor (exposed PS) might be associated with parasite survival/persistence in macrophages and lesion exacerbation during the course of DCL, providing new insights regarding pathogenic mechanism in this rare chronic disease.


Subject(s)
Leishmania/drug effects , Leishmania/pathogenicity , Leishmaniasis, Diffuse Cutaneous/parasitology , Phosphatidylserines/pharmacology , Animals , Chronic Disease , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Humans , Immune Tolerance/drug effects , Leishmania/isolation & purification , Leishmaniasis, Diffuse Cutaneous/immunology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/parasitology , Mice
11.
J Parasitol Res ; 2012: 981686, 2012.
Article in English | MEDLINE | ID: mdl-22518276

ABSTRACT

Leishmania amazonensis parasites cause progressive disease in most inbred mouse strains and are associated with the development of diffuse cutaneous leishmaniasis in humans. The poor activation of an effective cellular response is correlated with the ability of these parasites to infect mononuclear phagocytic cells without triggering their activation or actively suppressing innate responses of these cells. Here we discuss the possible role of phosphatidylserine exposure by these parasites as a main regulator of the mechanism underlying subversion of the immune system at different steps during the infection.

12.
Thromb Haemost ; 106(4): 712-23, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21800005

ABSTRACT

Shedding of microvesicles (MVs) by cancer cells is implicated in a variety of biological effects, including the establishment of cancer-associated hypercoagulable states. However, the mechanisms underlying malignant transformation and the acquisition of procoagulant properties by tumour-derived MVs are poorly understood. Here we investigated the procoagulant and prothrombotic properties of MVs produced by a melanocyte-derived cell line (melan-a) as compared to its tumourigenic melanoma counterpart Tm1. Tumour cells exhibit a two-fold higher rate of MVs production as compared to melan-a. Melanoma MVs display greater procoagulant activity and elevated levels of the clotting initiator protein tissue factor (TF). On the other hand, tumour- and melanocyte-derived MVs expose similar levels of the procoagulant lipid phosphatidylserine, displaying identical abilities to support thrombin generation by the prothrombinase complex. By using an arterial thrombosis model, we observed that melanoma- but not melanocyte-derived MVs strongly accelerate thrombus formation in a TF-dependent manner, and accumulate at the site of vascular injury. Analysis of plasma obtained from melanoma-bearing mice showed the presence of MVs with a similar procoagulant pattern as compared to Tm1 MVs produced in vitro. Remarkably, flow-cytometric analysis demonstrated that 60% of ex vivo MVs are TF-positive and carry the melanoma-associated antigen, demonstrating its tumour origin. Altogether our data suggest that malignant transformation in melanocytes increases the production of procoagulant MVs, which may contribute for a variety of coagulation-related protumoural responses.


Subject(s)
Cell-Derived Microparticles/metabolism , Melanocytes/metabolism , Melanoma/metabolism , Skin Neoplasms/metabolism , Thromboplastin/metabolism , Animals , Blood Coagulation , Cell Line, Tumor , Cell Transformation, Neoplastic , Cell-Derived Microparticles/pathology , Coagulants/metabolism , Humans , Melanocytes/pathology , Melanocytes/transplantation , Melanoma/pathology , Melanoma/physiopathology , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Plasma/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/physiopathology , Thrombophilia , Thrombosis , Tumor Microenvironment
13.
Cell Mol Life Sci ; 67(10): 1653-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20140747

ABSTRACT

Different death-styles have been described in unicellular organisms. In most cases they evolve with phenotypic features similar to apoptotic death of animal cells, such as phosphatidylserine (PS) exposure, oligonucleosomal DNA fragmentation, and loss of mitochondrial transmembrane potential, hinting that similar mechanisms operate in both situations. However, the biochemical pathways underlying death in unicellular organisms are still unclear. Host recognition of PS exposed on the surface of unicellular parasites is an important feature of the process of infection and progression of the disease. Here, we discuss data showing that entirely different mechanisms of PS exposure co-exist during the life-cycle of Leishmania amazonensis: in the case of promastigotes, a sub-population dies by apoptosis; in the case of amastigotes, the entire population exposes PS, not necessarily followed by apoptotic death. This phenomenon has been called apoptotic mimicry. The elusive caspase-like activities described in protozoa are also discussed.


Subject(s)
Apoptosis , Leishmania/physiology , Molecular Mimicry , Animals , Caspases/metabolism , Humans , Immune Evasion/immunology , Immune System/immunology
14.
Science ; 326(5955): 935; author reply 935, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19965498
15.
PLoS One ; 4(5): e5733, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19478944

ABSTRACT

Mimicking mammalian apoptotic cells by exposing phosphatidylserine (PS) is a strategy used by virus and parasitic protozoa to escape host protective inflammatory responses. With Leishmania amazonensis (La), apoptotic mimicry is a prerogative of the intramacrophagic amastigote form of the parasite and is modulated by the host. Now we show that differently from what happens with amastigotes, promastigotes exposing PS are non-viable, non-infective cells, undergoing apoptotic death. As part of the normal metacyclogenic process occurring in axenic cultures and in the gut of sand fly vectors, a sub-population of metacyclic promastigotes exposes PS. Apoptotic death of the purified PS-positive (PS(POS)) sub-population was confirmed by TUNEL staining and DNA laddering. Transmission electron microscopy revealed morphological alterations in PS(POS) metacyclics such as DNA condensation, cytoplasm degradation and mitochondrion and kinetoplast destruction, both in in vitro cultures and in sand fly guts. TUNEL(POS) promastigotes were detected only in the anterior midgut to foregut boundary of infected sand flies. Interestingly, caspase inhibitors modulated parasite death and PS exposure, when added to parasite cultures in a specific time window. Efficient in vitro macrophage infections and in vivo lesions only occur when PS(POS) and PS-negative (PS(NEG)) parasites were simultaneously added to the cell culture or inoculated in the mammalian host. The viable PS(NEG) promastigote was the infective form, as shown by following the fate of fluorescently labeled parasites, while the PS(POS) apoptotic sub-population inhibited host macrophage inflammatory response. PS exposure and macrophage inhibition by a subpopulation of promastigotes is a different mechanism than the one previously described with amastigotes, where the entire population exposes PS. Both mechanisms co-exist and play a role in the transmission and development of the disease in case of infection by La. Since both processes confer selective advantages to the infective microorganism they justify the occurrence of apoptotic features in a unicellular pathogen.


Subject(s)
Apoptosis , Leishmania mexicana/cytology , Leishmania mexicana/growth & development , Leishmaniasis/pathology , Leishmaniasis/parasitology , Life Cycle Stages , Animals , Digestive System/cytology , Digestive System/parasitology , Digestive System/ultrastructure , In Situ Nick-End Labeling , Leishmania mexicana/pathogenicity , Leishmania mexicana/ultrastructure , Mice , Phosphatidylserines/metabolism , Psychodidae/cytology , Psychodidae/parasitology , Psychodidae/ultrastructure
16.
Cancer Lett ; 283(2): 168-75, 2009 Oct 08.
Article in English | MEDLINE | ID: mdl-19401262

ABSTRACT

Exposure of phosphatidylserine (PS) on cellular membranes and membrane-derived microvesicles stimulates a number of anti-inflammatory responses involved in malignant processes. Herein we show that B16F10 cells, a highly metastatic melanoma cell line, produce large quantities of PS-containing microvesicles in vitro. Tumor microvesicles increased TGF-beta(1) production by cultured macrophages and, in vivo, enhanced the metastatic potential of B16F10 cells in C57BL/6 mice, both effects being reversed by annexin V. Most strikingly, microvesicles induced melanoma metastasis in BALB/c mice, which are normally resistant to this tumor cell line. Altogether, this is the first demonstration that tumor-derived microvesicles favor the establishment of melanoma metastasis in a PS-dependent manner, possibly by down-regulating the host's inflammatory and/or anti-tumoral immune responses.


Subject(s)
Cell-Derived Microparticles/immunology , Cell-Derived Microparticles/metabolism , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Phosphatidylserines/metabolism , Animals , Cell Line, Tumor , Cell-Derived Microparticles/chemistry , Flow Cytometry , Macrophages/immunology , Macrophages/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Neoplasm Invasiveness/immunology , Transforming Growth Factor beta1/immunology , Transforming Growth Factor beta1/metabolism
17.
Mol Carcinog ; 47(10): 757-67, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18348187

ABSTRACT

The clear cell subtype of renal cell carcinoma (RCC) is the most lethal and prevalent cancer of the urinary system. To investigate the molecular changes associated with malignant transformation in clear cell RCC, the gene expression profiles of matched samples of tumor and adjacent non-neoplastic tissue were obtained from six patients. A custom-built cDNA microarray platform was used, comprising 2292 probes that map to exons of genes and 822 probes for noncoding RNAs mapping to intronic regions. Intronic transcription was detected in all normal and neoplastic renal tissues. A subset of 55 transcripts was significantly down-regulated in clear cell RCC relative to the matched nontumor tissue as determined by a combination of two statistical tests and leave-one-out patient cross-validation. Among the down-regulated transcripts, 49 mapped to untranslated or coding exons and 6 were intronic relative to known exons of protein-coding genes. Lower levels of expression of SIN3B, TRIP3, SYNJ2BP and NDE1 (P < 0.02), and of intronic transcripts derived from SND1 and ACTN4 loci (P < 0.05), were confirmed in clear cell RCC by Real-time RT-PCR. A subset of 25 transcripts was deregulated in additional six nonclear cell RCC samples, pointing to common transcriptional alterations in RCC irrespective of the histological subtype or differentiation state of the tumor. Our results indicate a novel set of tumor suppressor gene candidates, including noncoding intronic RNAs, which may play a significant role in malignant transformations of normal renal cells.


Subject(s)
Down-Regulation , Introns , Kidney Neoplasms/genetics , RNA, Untranslated/genetics , Expressed Sequence Tags , Gene Expression Profiling , Humans , Kidney Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
18.
J Immunol ; 176(3): 1834-9, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16424214

ABSTRACT

Signaling through exposed phosphatidylserine (PS) is fundamental for the TGFbeta1-dependent, noninflammatory phagocytosis of apoptotic cells. This same mechanism operates in the internalization of amastigotes of Leishmania (L) amazonensis (L(L)a) in a process quoted as apoptotic mimicry. Now we show that the host modulates PS exposure by the amastigotes and, as a consequence, BALB/c mice-derived amastigotes expose significantly more PS than those derived from C57BL/6 mice. Due to this difference in the density of surface PS molecules, the former are significantly more infective than the latter, both in vivo, in F1 (BALB/c x C57BL/6) mice, and in vitro, in thioglycollate-derived macrophages from this same mouse strain. PS exposure increases with progression of the lesion and reaches its maximum value in amastigotes obtained at the time point when the lesion in C57BL/6 mice begins to decrease in size and the lesions in BALB/c mice are still growing in size. Synthesis of active TGFbeta1, induction of IL-10 message, and inhibition of NO synthesis correlate with the amount of surface PS displayed by viable (propidium iodide-negative) infective amastigote. Furthermore, we also show that, similar to what happens with apoptotic cells, amastigotes of L(L)a are internalized by macropinocytosis. This mechanism of internalization is consistent with the large phagolysosomes characteristic of L(L)a infection. The intensity of macrophage macropinocytic activity is dependent on the amount of surface PS displayed by the infecting amastigote.


Subject(s)
Apoptosis/immunology , Leishmania mexicana/growth & development , Molecular Mimicry/immunology , Phosphatidylserines/metabolism , Animals , Cells, Cultured , Host-Parasite Interactions/immunology , Interleukin-10/biosynthesis , Interleukin-10/genetics , Leishmania mexicana/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Pinocytosis/immunology , RNA, Messenger/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1
19.
Blood ; 107(5): 2192-9, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16249380

ABSTRACT

It has been shown that in vivo and in vitro treatment with G-CSF induces the generation of low-density granulocytes (LDGs), which copurify with PBMCs and inhibit IFN-gamma production by human T cells. These results prompted us to postulate an immunomodulatory role for LDGs in acute graft-versus-host disease (aGVHD). Here it is shown that in the mouse experimental model, in vivo and in vitro G-CSF treatment generates LDGs capable of inhibiting 80% of T-cell IFN-gamma production. To assess the role of these LDGs in aGVHD, lethally irradiated (C57BL/6 x BALB/c) F1 hosts were reconstituted with T cell-depleted bone marrow cells plus nylon wool-purified spleen cells from G-CSF-treated (G-NWS) or -nontreated (NWS) C57BL/6 donors. Recipients of G-NWS had a 75% survival rate in contrast to a rate of 25% in the NWS recipients. The protective effect was completely abolished, and the mortality rate was 100% if donor-cell infusion was treated with anti-Gr1. Moreover, if LDGs were infused with NWS, full protection of aGVHD was observed, and no signs of disease were evidenced by mortality rate, weight loss, or histopathology of target organs. These results revealed the unexpected immunosuppressive capacity of G-CSF based on the generation of LDGs, leading to the possibility of using these cells as inhibitors of aGVHD.


Subject(s)
Bone Marrow Transplantation , Graft vs Host Disease/prevention & control , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocytes/transplantation , Acute Disease , Animals , Female , Graft vs Host Disease/pathology , Humans , Lymphocyte Depletion/methods , Mice
20.
Exp Parasitol ; 110(1): 39-47, 2005 May.
Article in English | MEDLINE | ID: mdl-15804377

ABSTRACT

Characterization of infective metacyclic promastigotes of Leishmania spp can be an essential step in several experimental protocols. Metacyclic forms of all Leishmania species display a typical morphology with short, narrow cell body, and an elongated flagellum. This feature suggests that metacyclics can be distinguished from procyclic forms by non-fluorimetric flow cytometric parameters thus enabling the follow-up of their appearance and acquisition of specific properties, during metacyclogenesis in in vitro cultures. Here we describe the flow cytometric parameters of stage-specific promastigotes of Leishmania major, Leishmania donovani, Leishmania amazonensis, and Leishmania braziliensis. Our findings were validated by optical microscopy morphology and specific procyclic labeling with FITC-peanut agglutinin. Furthermore, we show that parasite's distribution in the plot during differentiation in culture is not species specific and that the parasites displaying low forward-angle light scatter (FSC(low)) are three times more infective than the FSC(high) ones. The method here described can be applied to the identification of metacyclics of different Leishmania spp within the whole stationary population.


Subject(s)
Leishmania/growth & development , Animals , Cells, Cultured , Flow Cytometry , Humans , Leishmania/isolation & purification , Leishmania/ultrastructure , Leishmania braziliensis/growth & development , Leishmania braziliensis/isolation & purification , Leishmania braziliensis/ultrastructure , Leishmania donovani/growth & development , Leishmania donovani/isolation & purification , Leishmania donovani/ultrastructure , Leishmania major/growth & development , Leishmania major/isolation & purification , Leishmania major/ultrastructure , Leishmania mexicana/growth & development , Leishmania mexicana/isolation & purification , Leishmania mexicana/ultrastructure , Life Cycle Stages , Macrophages, Peritoneal/parasitology , Mice , Mice, Inbred BALB C , Reproducibility of Results , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...