Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
J Biomech ; 156: 111669, 2023 07.
Article in English | MEDLINE | ID: mdl-37302165

ABSTRACT

Muscle energetics encompasses the relationships between mechanical performance and the biochemical and thermal changes that occur during muscular activity. The biochemical reactions that underpin contraction are described and the way in which these are manifest in experimental recordings, as initial and recovery heat, is illustrated. Energy use during contraction can be partitioned into that related to cross-bridge force generation and that associated with activation by Ca2+. Activation processes account for 25-45% of ATP turnover in an isometric contraction, varying amongst muscles. Muscle energy use during contraction depends on the nature of the contraction. When shortening muscles produce less force than when contracting isometrically but use energy at a greater rate. These characteristics reflect more rapid cross-bridge cycling when shortening. When lengthening, muscles produce more force than in an isometric contraction but use energy at a lower rate. In that case, cross-bridges cycle but via a pathway in which ATP splitting is not completed. Shortening muscles convert part of the free energy available from ATP hydrolysis into work with the remainder appearing as heat. In the most efficient muscle studied, that of a tortoise, cross-bridges convert a maximum of 47% of the available energy into work. In most other muscles, only 20-30% of the free energy from ATP hydrolysis is converted into work.


Subject(s)
Adenosine Triphosphate , Energy Metabolism , Energy Metabolism/physiology , Adenosine Triphosphate/metabolism , Muscle Contraction/physiology , Muscles/physiology , Isometric Contraction/physiology
2.
J Biomech ; 156: 111665, 2023 07.
Article in English | MEDLINE | ID: mdl-37327644

ABSTRACT

Muscle energetics has expanded into the study of contractions that resemble in vivo muscle activity. A summary is provided of experiments of this type and what they have added to our understanding of muscle function and effects of compliant tendons, as well as the new questions raised about the efficiency of energy transduction in muscle.


Subject(s)
Muscle Contraction , Tendons , Muscle Contraction/physiology , Tendons/physiology , Muscles/physiology , Muscle, Skeletal/physiology , Energy Metabolism/physiology
3.
Eur J Appl Physiol ; 123(1): 25-42, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36271943

ABSTRACT

In the mid-nineteenth century, the concept of muscle behaving like a stretched spring was developed. This elastic model of contraction predicted that the energy available to perform work was established at the start of a contraction. Despite several studies showing evidence inconsistent with the elastic model, it persisted into the twentieth century. In 1923, W. O. Fenn published a paper in which he presented evidence that appeared to clearly refute the elastic model. Fenn showed that when a muscle performs work it produces more heat than when contracting isometrically. He proposed that energy for performing work was only made available in a muscle as and when that work was performed. However, his ideas were not adopted and it was only after 15 years of technical developments that in 1938 A. V. Hill performed experiments that conclusively disproved the elastic model and supported Fenn's conclusions. Hill showed that the rate of heat production increased as a muscle made the transition from isometric to working contraction. Understanding the basis of the phenomenon observed by Fenn and Hill required another 40 years in which the processes that generate force and work in muscle and the associated scheme of biochemical reactions were established. Demonstration of the biochemical equivalent of Hill's observations-changes in rate of ATP splitting when performing work-in 1999 was possible through further technical advances. The concept that the energy, from ATP splitting, required to perform work is dynamically modulated in accord with the loads a muscle encounters when contracting is key to understanding muscle energetics.


Subject(s)
Muscle Contraction , Muscles , Male , Humans , Muscle Contraction/physiology , Muscles/physiology , Adenosine Triphosphate
4.
Prog Biophys Mol Biol ; 161: 3-16, 2021 05.
Article in English | MEDLINE | ID: mdl-33535062

ABSTRACT

The objective of this article is to provide an historical perspective on a review of "Heat production and chemical change in muscle" written by Roger C. Woledge and published in Progress in Biophysics and Molecular Biology 50 years ago. We first provide a brief but broad summary of the history of muscle chemistry prior to 1971 and then address the central theme of the 1971 review - that of energy balance. Energy balance is a method to establish whether all the energetically significant biochemical reactions accompanying muscle contraction have been identified. Woledge adopted the method to compare the measured enthalpy output (i.e., the sum of the heat output and work output) to that expected from the extent of known biochemical reactions. Prior work had suggested that the observed and expected enthalpy outputs were similar but Woledge proposed that the expected heat had been overestimated and that, hence, there must be an unidentified reaction that accounted for as much as half the heat produced by a contracting muscle. We describe investigations carried out after the review that vindicated that view, ultimately characterising the processes producing the unexplained enthalpy which, in turn, led to identification of the hitherto unknown reaction. Those experiments and a more recent resurrection of the approach using fluorescent probes to monitor ATP turnover have now accounted for the processes that underlie the complex time courses of muscle heat production and ATP turnover during contraction, at least in the classical frog sartorius muscle preparation. However, the few studies performed on mammalian muscles since then have produced results that are difficult to reconcile with the ideas derived from energy balance studies of amphibian and fish muscles, thereby suggesting a new objective for energy balance studies.


Subject(s)
Muscles , Thermogenesis , Adenosine Triphosphate/metabolism , Animals , Energy Metabolism , Muscle Contraction , Muscles/metabolism , Thermodynamics
5.
J Muscle Res Cell Motil ; 42(1): 1-16, 2021 03.
Article in English | MEDLINE | ID: mdl-31346851

ABSTRACT

Activation heat (qA) production by muscle is the thermal accompaniment of the release of Ca2+ from the sarcoplasmic reticulum (SR) into the cytoplasm, its interactions with regulatory proteins and other cytoplasmic Ca2+ buffers and its return to the SR. The contribution of different Ca2+-related reactions to qA is difficult to determine empirically and therefore, for this study, a mathematical model was developed to describe Ca2+ movements and accompanying thermal changes in muscle fibres in response to stimulation. The major sources of heat within a few milliseconds of the initiation of Ca2+ release are Ca2+ binding to Tn and Pv. Ca2+ binding to ATP produces a relatively small amount of heat. Ca2+ dissociation from ATP and Tn, with heat absorption, are of similar time course to the decline of force. In muscle lacking Pv (e.g. mouse soleus), Ca2+ is then rapidly pumped into the SR. In muscles with Pv, Ca2+ that dissociates from Tn and ATP binds to Pv and then dissociates slowly (over 10 s of seconds) and is then pumped into the SR; the net effect of these two processes is heat absorption. It is proposed that this underlies Hill's "negative delayed heat". After all the Ca2+ is returned to the SR, qA is proportional to the amount of Ca2+ released into the cytoplasm. In muscles with Pv this is 20-60 s after Ca2+ release; in muscles without Pv, all Ca2+ is returned to the SR soon after the end of force relaxation.


Subject(s)
Calcium/metabolism , Muscle, Skeletal/physiopathology , Animals , Hot Temperature , Humans , Mice
6.
J Muscle Res Cell Motil ; 38(2): 143-155, 2017 04.
Article in English | MEDLINE | ID: mdl-28286928

ABSTRACT

The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min-1 during isometric contractions of various intensity to as much as 400 mM min-1 during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min-1 which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min-1. During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min-1 over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.


Subject(s)
Energy Metabolism , Muscle, Skeletal/metabolism , Humans
7.
Physiol Meas ; 36(9): 1853-72, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26234299

ABSTRACT

Contracting muscles produce heat which largely arises from the biochemical reactions that provide the energy for contraction. Measurements of muscle heat production have made, and continue to make, important contributions to our understanding of the bases of contraction. Most measurements of muscle heat production are made using a thermopile, consisting of a series of thermocouples arranged so that alternate thermocouples are in thermal contact with the muscle and with an isothermal reference. In this study, a mathematical model was constructed of a muscle lying on a thermopile consisting of antimony-bismuth thermocouples sandwiched between polymer sheets. The validity of the model was demonstrated by its ability to accurately predict thermopile outputs in response to applying heat to the thermopile surface, to generating heat in the thermocouples using the Peltier effect and to adding heat capacity on the thermopile surface. The model was then used to show how practical changes to thermopile construction could minimise response time and thermopile heat capacity and allow measurement of very low rates of heat production. The impulse response of a muscle-thermopile system was generated using the model and used to illustrate how a measured signal can be deconvolved with the impulse response to correct for lag introduced by the thermopile.


Subject(s)
Hot Temperature , Models, Biological , Muscles/physiology , Computer Simulation , Monte Carlo Method , Muscle Contraction/physiology , Polymers , Thermogenesis
8.
Compr Physiol ; 5(2): 961-95, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25880520

ABSTRACT

Muscles convert energy from ATP into useful work, which can be used to move limbs and to transport ions across membranes. The energy not converted into work appears as heat. At the start of contraction heat is also produced when Ca(2+) binds to troponin-C and to parvalbumin. Muscles use ATP throughout an isometric contraction at a rate that depends on duration of stimulation, muscle type, temperature and muscle length. Between 30% and 40% of the ATP used during isometric contraction fuels the pumping Ca(2+) and Na(+) out of the myoplasm. When shortening, muscles produce less force than in an isometric contraction but use ATP at a higher rate and when lengthening force output is higher than the isometric force but rate of ATP splitting is lower. Efficiency quantifies the fraction of the energy provided by ATP that is converted into external work. Each ATP molecule provides 100 zJ of energy that can potentially be converted into work. The mechanics of the myosin cross-bridge are such that at most 50 zJ of work can be done in one ATP consuming cycle; that is, the maximum efficiency of a cross-bridge is ∼50%. Cross-bridges in tortoise muscle approach this limit, producing over 90% of the possible work per cycle. Other muscles are less efficient but contract more rapidly and produce more power.


Subject(s)
Adenosine Triphosphate/physiology , Energy Transfer/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Animals , Humans , Models, Biological
9.
Pflugers Arch ; 466(3): 599-609, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24013759

ABSTRACT

The purpose of this study was to determine how the mechanical efficiency of skeletal muscle is affected by level of activation. Experiments were performed in vitro (35 °C) using bundles of fibres from fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of mice. Measurements were made of the total work and heat produced in response to 10 brief contractions. Mechanical efficiency was the ratio of total work performed to (total heat produced + work performed). Level of activation was varied by altering stimulation frequency between 40 and 160 Hz. Efficiency did not differ significantly between the two muscle types but was significantly lower using 40 Hz stimulation (mean efficiency ± SEM, 0.092 ± 0.012, n = 12, averaged across EDL and soleus) than at any of the other frequencies (160 Hz: 0.147 ± 0.007, n = 12). Measurements of the partitioning of energy output between force-dependent and force-independent components enabled calculation of the amount of Ca(2+) released and number of cross-bridge cycles performed during the contractions. At 40 Hz stimulation frequency, less Ca(2+) was released than at higher frequencies and fewer cross-bridge cycles were performed. Furthermore, less work was performed in each cross-bridge cycle. It is concluded that skeletal muscles are less efficient at low levels of activation than when fully activated and this indicates that level of activation affects not only the number of cycling cross-bridges but also the ability of individual cross-bridges to perform work.


Subject(s)
Isometric Contraction , Muscle Fibers, Slow-Twitch/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Energy Metabolism , Male , Mice , Muscle Fibers, Slow-Twitch/physiology
10.
J Physiol ; 590(23): 6199-212, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23027818

ABSTRACT

The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 µmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 µmol kg(-1); EDL, 168 µmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.


Subject(s)
Calcium/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Animals , Male , Mice , Muscle Contraction/physiology
11.
Acta Physiol (Oxf) ; 204(4): 533-43, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21910835

ABSTRACT

AIM: As muscles fatigue, their ability to generate mechanical work decreases as a result of decreased force generation and in cyclic activity, slower the relaxation. The purpose of this study was to determine whether a compliant tendon, connected in series with a muscle, would increase sustained work output during cyclic contractions. METHODS: Experiments were performed in vitro (37 °C) using fibre bundles from mouse soleus muscles (n = 7). Each muscle performed two series of 40 brief contractions at a contraction frequency of 2 Hz and with a sinusoidal length change. One series was performed using the fibre bundle only and one with the fibre bundle and a compliant strip of latex connected between the muscle and the force recording apparatus. RESULTS: When contracting with the latex strip, muscle work output was better maintained during the second half of the protocol than when performed without the latex, overall energy cost was reduced and mechanical efficiency was increased. CONCLUSION: The provision of a compliant tendon analogue increased the level of work output that could be sustained during cyclic contractions and reduced energy expenditure. It is proposed that both metabolic and mechanical consequences of the compliant tendon contribute to the improved performance.


Subject(s)
Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Tendons/physiology , Animals , Biomechanical Phenomena , Energy Metabolism/physiology , Male , Mice
12.
Adv Exp Med Biol ; 682: 267-78, 2010.
Article in English | MEDLINE | ID: mdl-20824531

ABSTRACT

The aim of this study was to make cellular-level measurements of the mechanical efficiency of mouse cardiac muscle and to use these measurements to determine (1) the work performed by a cross-bridge in one ATP-splitting cycle and (2) the fraction of the free energy available in metabolic substrates that is transferred by oxidative phosphorylation to free energy in ATP (i.e. mitochondrial thermodynamic efficiency). Experiments were performed using isolated left ventricular mouse papillary muscles (n = 9; studied at 27°C) and the myothermic technique. The production of work and heat was measured during and after 40 contractions at a contraction frequency of 2 Hz. Each contraction consisted of a brief isometric period followed by isovelocity shortening. Work output, heat output and enthalpy output were all independent of shortening velocity. Maximum initial mechanical efficiency (mean ± SEM) was 31.1 ± 1.3% and maximum net mechanical efficiency 16.9 ± 1.5%. It was calculated that the maximum work per cross-bridge cycle was 20 zJ, comparable to values for mouse skeletal muscle, and that mitochondrial thermodynamic efficiency was 72%. Analysis of data in the literature suggests that mitochondrial efficiency of cardiac muscle from other species is also likely to be between 70 and 80%.


Subject(s)
Muscle Contraction/physiology , Myocardium/metabolism , Papillary Muscles/physiology , Adenosine Triphosphate/metabolism , Animals , Energy Metabolism , Male , Mice , Mitochondria, Heart/metabolism , Mitochondria, Muscle/metabolism , Oxidative Phosphorylation
13.
J Physiol ; 588(Pt 19): 3819-31, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20679354

ABSTRACT

Myosin crossbridges in muscle convert chemical energy into mechanical energy. Reported values for crossbridge efficiency in human muscles are high compared to values measured in vitro using muscles of other mammalian species. Most in vitro muscle experiments have been performed at temperatures lower than mammalian physiological temperature, raising the possibility that human efficiency values are higher than those of isolated preparations because efficiency is temperature dependent. The aim of this study was to determine the effect of temperature on the efficiency of isolated mammalian (mouse) muscle. Measurements were made of the power output and heat production of bundles of muscle fibres from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles during isovelocity shortening. Mechanical efficiency was defined as the ratio of power output to rate of enthalpy output, where rate of enthalpy output was the sum of the power output and rate of heat output. Experiments were performed at 20, 25 and 30◦C. Maximum efficiency of EDL muscles was independent of temperature; the highest value was 0.31}0.01 (n =5) at 30◦C. Maximum efficiency of soleus preparations was slightly but significantly higher at 25 and 30◦C than at 20◦C; the maximum mean value was 0.48±0.02 (n =7) at 25◦C. It was concluded that maximum mechanical efficiency of isolated mouse muscle was little affected by temperature between 20 and 30◦C and that it is unlikely that differences in temperature account for the relatively high efficiency of human muscle in vivo compared to isolated mammalian muscles.


Subject(s)
Body Temperature/physiology , Muscle, Skeletal/physiology , Animals , Electric Stimulation , Energy Metabolism/physiology , Isometric Contraction/physiology , Kinetics , Male , Mice , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/metabolism , Patch-Clamp Techniques , Temperature , Thermodynamics
14.
J Exp Biol ; 213(5): 707-14, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20154185

ABSTRACT

Muscle power output and efficiency during cyclical contractions are influenced by the timing and duration of stimulation of the muscle and the interaction of the muscle with its mechanical environment. It has been suggested that tendon compliance may reduce the energy required for power production from the muscle by reducing the required shortening of the muscle fibres. Theoretically this may allow the muscle to maintain both high power output and efficiency during cyclical contraction; however, this has yet to be demonstrated experimentally. To investigate how tendon compliance might act to increase muscle power output and/or efficiency, we attached artificial tendons of varying compliance to muscle fibre bundles in vitro and measured power output and mechanical efficiency during stretch-shorten cycles (2 Hz) with a range of stretch amplitudes and stimulation patterns. The results showed that peak power, average power output and efficiency (none of which can have direct contributions from the compliant tendon) all increased with increasing tendon compliance, presumably due to the tendon acting to minimise muscle energy use by allowing the muscle fibres to shorten at optimal speeds. Matching highly compliant tendons with a sufficiently large amplitude length change and appropriate stimulation pattern significantly increased the net muscle efficiency compared with stiff tendons acting at the same frequency. The maximum efficiency for compliant tendons was also similar to the highest value measured under constant velocity and force conditions, which suggests that tendon compliance can maximise muscle efficiency in the conditions tested here. These results provide experimental evidence that during constrained cyclical contractions, muscle power and efficiency can be enhanced with compliant tendons.


Subject(s)
Muscle Contraction/physiology , Muscles/physiology , Tendons/physiology , Animals , Biomechanical Phenomena , Compliance , Electric Stimulation , Energy Metabolism/physiology , In Vitro Techniques , Male , Mice
15.
J Muscle Res Cell Motil ; 31(1): 35-44, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20084431

ABSTRACT

Effects of Pi (inorganic phosphate) are relevant to the in vivo function of muscle because Pi is one of the products of ATP hydrolysis by actomyosin and by the sarcoplasmic reticulum Ca(2+) pump. We have measured the Pi sensitivity of force produced by permeabilized muscle fibres from dogfish (Scyliorhinus canicula) and rabbit. The activation conditions for dogfish fibres were crucial: fibres activated from the relaxed state at 5, 12, and 20 degrees C were sensitive to Pi, whereas fibres activated from rigor at 12 degrees C were insensitive to Pi in the range 5-25 mmol l(-1). Rabbit fibres activated from rigor were sensitive to Pi. Pi sensitivity of force produced by dogfish fibres activated from the relaxed state was greater below normal body temperature (12 degrees C for dogfish) in agreement with what is known for other species. The force-temperature relationship for dogfish fibres (intact and permeabilized fibres activated from relaxed) showed that at 12 degrees C, normal body temperature, the force was near to its maximum value.


Subject(s)
Body Temperature/physiology , Calcium/metabolism , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/metabolism , Phosphates/pharmacology , Sarcoplasmic Reticulum/metabolism , Adenosine Triphosphate/metabolism , Animals , Dogfish , Rabbits
16.
Prog Biophys Mol Biol ; 102(1): 53-71, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19836411

ABSTRACT

Work is generated in muscle by myosin crossbridges during their interaction with the actin filament. The energy from which the work is produced is the free energy change of ATP hydrolysis and efficiency quantifies the fraction of the energy supplied that is converted into work. The purpose of this review is to compare the efficiency of frog skeletal muscle determined from measurements of work output and either heat production or chemical breakdown with the work produced per crossbridge cycle predicted on the basis of the mechanical responses of contracting muscle to rapid length perturbations. We review the literature to establish the likely maximum crossbridge efficiency for frog skeletal muscle (0.4) and, using this value, calculate the maximum work a crossbridge can perform in a single attachment to actin (33 x 10(-21) J). To see whether this amount of work is consistent with our understanding of crossbridge mechanics, we examine measurements of the force responses of frog muscle to fast length perturbations and, taking account of filament compliance, determine the crossbridge force-extension relationship and the velocity dependences of the fraction of crossbridges attached and average crossbridge strain. These data are used in combination with a Huxley-Simmons-type model of the thermodynamics of the attached crossbridge to determine whether this type of model can adequately account for the observed muscle efficiency. Although it is apparent that there are still deficiencies in our understanding of how to accurately model some aspects of ensemble crossbridge behaviour, this comparison shows that crossbridge energetics are consistent with known crossbridge properties.


Subject(s)
Muscle, Skeletal/physiology , Adenosine Triphosphate/metabolism , Animals , Anura , Energy Metabolism , Humans , Models, Biological , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Thermodynamics
17.
Proc Biol Sci ; 276(1668): 2685-95, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19364742

ABSTRACT

Following the ideas introduced by Huxley (Huxley 1957, Prog. Biophys. Biophys. Chem. 7, 255-318), it is generally supposed that muscle contraction is produced by temporary links, called crossbridges, between myosin and actin filaments, which form and break in a cyclic process driven by ATP splitting. Here we consider the interaction of the energy in the crossbridge, in its various states, and the force exerted. We discuss experiments in which the mechanical state of the crossbridge is changed by imposed movement and the energetic consequence observed as heat output and the converse experiments in which the energy content is changed by altering temperature and the mechanical consequences are observed. The thermodynamic relationship between the experiments is explained and, at the first sight, the relationship between the results of these two types of experiment appears paradoxical. However, we describe here how both of them can be explained by a model in which mechanical and energetic changes in the crossbridges occur in separate steps in a branching cycle.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/physiology , Animals , Energy Metabolism , Thermodynamics
18.
Pflugers Arch ; 457(4): 857-64, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18648851

ABSTRACT

Uncoupling protein 3 (UCP3) is a mitochondrial transporter protein which, when over-expressed in mice, is associated with increased metabolic rate, increased feeding and low body weight. This phenotype probably reflects the increased levels of UCP3 partially uncoupling mitochondrial respiration from cellular ATP demands. Consistent with that, mitochondria isolated from muscles of mice that over-express UCP3 are less tightly coupled than those from wild-type mice but the degree of uncoupling is not modulated by likely physiological regulatory factors. To determine whether this also applies to intact muscle fibres, we tested the hypothesis that UCP3 constitutively (i.e. in an unregulated fashion) uncouples mitochondria in muscles from mice that over-expressed human UCP3 (OE mice). The rate of heat production of resting muscles was measured in vitro using bundles of fibres from soleus and extensor digitorum longus muscles of OE, wild-type (WT) and UCP3 knock-out mice. At 20 degrees C, the only significant effect of genotype was that the rate of heat production of OE soleus (3.04+/-0.16 mW g(-1)) was greater than for WT soleus (2.31+/-0.05 mW g(-1)). At physiological temperature (35 degrees C), the rate of heat production was independent of genotype and equal to the expected in vivo rate for skeletal muscles of WT mice. We conclude that at 35 degrees C, the transgenic UCP3 was not constitutively active, but at 20 degrees C in slow-twitch muscle, it was partially activated by unknown factors. The physiological factor(s) that activate mitochondrial uncoupling by UCP3 in vivo was either not present or inactive in resting isolated muscles.


Subject(s)
Body Temperature , Energy Metabolism , Genotype , Ion Channels/genetics , Mitochondrial Proteins/genetics , Muscle, Skeletal/metabolism , Animals , Humans , Ion Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondrial Proteins/metabolism , Muscle, Skeletal/cytology , Uncoupling Protein 3
20.
Prog Biophys Mol Biol ; 97(2-3): 348-66, 2008.
Article in English | MEDLINE | ID: mdl-18384845

ABSTRACT

In this brief review, we have focussed largely on the well-established, but essentially phenomenological, linear relationship between the energy expenditure of the heart (commonly assessed as the oxygen consumed per beat, oxygen consumption (VO2)) and the pressure-volume-area (PVA, the sum of pressure-volume work and a specified 'potential energy' term). We raise concerns regarding the propriety of ignoring work done during 'passive' ventricular enlargement during diastole as well as the work done against series elasticity during systole. We question the common assumption that the rate of basal metabolism is independent of ventricular volume, given the equally well-established Feng- or stretch-effect. Admittedly, each of these issues is more of conceptual than of quantitative import. We point out that the linearity of the enthalpy-PVA relation is now so well established that observed deviations from linearity are often ignored. Given that a one-dimensional equivalent of the linear VO2-PVA relation exists in papillary muscles, it seems clear that the phenomenon arises at the cellular level, rather than being a property of the intact heart. This leads us to discussion of the classes of crossbridge models that can be applied to the study of cardiac energetics. An admittedly superficial examination of the historical role played by Hooke's Law in theories of muscle contraction foreshadows deeper consideration of the thermodynamic constraints that must, in our opinion, guide the development of any mathematical model. We conclude that a satisfying understanding of the origin of the enthalpy-PVA relation awaits the development of such a model.


Subject(s)
Heart/physiology , Models, Cardiovascular , Myocardial Contraction/physiology , Myocardium/metabolism , Oxygen Consumption/physiology , Animals , Diastole/physiology , Heart Rate/physiology , Humans , Stroke Volume , Systole/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...