Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
New Phytol ; 240(1): 224-241, 2023 10.
Article in English | MEDLINE | ID: mdl-37424336

ABSTRACT

The determination of starch granule morphology in plants is poorly understood. The amyloplasts of wheat endosperm contain large discoid A-type granules and small spherical B-type granules. To study the influence of amyloplast structure on these distinct morphological types, we isolated a mutant in durum wheat (Triticum turgidum) defective in the plastid division protein PARC6, which had giant plastids in both leaves and endosperm. Endosperm amyloplasts of the mutant contained more A- and B-type granules than those of the wild-type. The mutant had increased A- and B-type granule size in mature grains, and its A-type granules had a highly aberrant, lobed surface. This morphological defect was already evident at early stages of grain development and occurred without alterations in polymer structure and composition. Plant growth and grain size, number and starch content were not affected in the mutants despite the large plastid size. Interestingly, mutation of the PARC6 paralog, ARC6, did not increase plastid or starch granule size. We suggest TtPARC6 can complement disrupted TtARC6 function by interacting with PDV2, the outer plastid envelope protein that typically interacts with ARC6 to promote plastid division. We therefore reveal an important role of amyloplast structure in starch granule morphogenesis in wheat.


Subject(s)
Endosperm , Triticum , Endosperm/genetics , Endosperm/metabolism , Triticum/genetics , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism , Plastids/genetics , Plastids/metabolism , Mutation/genetics
2.
Science ; 380(6651): 1275-1281, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37347863

ABSTRACT

Growth coordination between cell layers is essential for development of most multicellular organisms. Coordination may be mediated by molecular signaling and/or mechanical connectivity between cells, but how genes modify mechanical interactions between layers is unknown. Here we show that genes driving brassinosteroid synthesis promote growth of internal tissue, at least in part, by reducing mechanical epidermal constraint. We identified a brassinosteroid-deficient dwarf mutant in the aquatic plant Utricularia gibba with twisted internal tissue, likely caused by mechanical constraint from a slow-growing epidermis. We tested this hypothesis by showing that a brassinosteroid mutant in Arabidopsis enhances epidermal crack formation, indicative of increased tissue stress. We propose that by remodeling cell walls, brassinosteroids reduce epidermal constraint, showing how genes can control growth coordination between layers by means of mechanics.


Subject(s)
Brassinosteroids , Lamiales , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/biosynthesis , Cell Communication , Cell Wall/metabolism , Lamiales/cytology , Lamiales/genetics , Lamiales/metabolism , Plant Epidermis/metabolism
3.
JCI Insight ; 7(23)2022 12 08.
Article in English | MEDLINE | ID: mdl-36477361

ABSTRACT

NK cell deficiencies (NKD) are a type of primary immune deficiency in which the major immunologic abnormality affects NK cell number, maturity, or function. Since NK cells contribute to immune defense against virally infected cells, patients with NKD experience higher susceptibility to chronic, recurrent, and fatal viral infections. An individual with recurrent viral infections and mild hypogammaglobulinemia was identified to have an X-linked damaging variant in the transcription factor gene ELF4. The variant does not decrease expression but disrupts ELF4 protein interactions and DNA binding, reducing transcriptional activation of target genes and selectively impairing ELF4 function. Corroborating previous murine models of ELF4 deficiency (Elf4-/-) and using a knockdown human NK cell line, we determined that ELF4 is necessary for normal NK cell development, terminal maturation, and function. Through characterization of the NK cells of the proband, expression of the proband's variant in Elf4-/- mouse hematopoietic precursor cells, and a human in vitro NK cell maturation model, we established this ELF4 variant as a potentially novel cause of NKD.


Subject(s)
Transcription Factors , Animals , Humans , Mice , DNA-Binding Proteins/genetics , Killer Cells, Natural , Transcription Factors/genetics
4.
Nat Commun ; 13(1): 4129, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840594

ABSTRACT

A critical challenge during volcanic emergencies is responding to rapid changes in eruptive behaviour. Actionable advice, essential in times of rising uncertainty, demands the rapid synthesis and communication of multiple datasets with prognoses. The 2020-2021 eruption of La Soufrière volcano exemplifies these challenges: a series of explosions from 9-22 April 2021 was preceded by three months of effusive activity, which commenced with a remarkably low level of detected unrest. Here we show how the development of an evolving conceptual model, and the expression of uncertainties via both elicitation and scenarios associated with this model, were key to anticipating this transition. This not only required input from multiple monitoring datasets but contextualisation via state-of-the-art hazard assessments, and evidence-based knowledge of critical decision-making timescales and community needs. In addition, we share strategies employed as a consequence of constraints on recognising and responding to eruptive transitions in a resource-constrained setting, which may guide similarly challenged volcano observatories worldwide.


Subject(s)
Disasters , Volcanic Eruptions
5.
Front Physiol ; 13: 862189, 2022.
Article in English | MEDLINE | ID: mdl-35733992

ABSTRACT

This study was undertaken to determine if fiber arrangement was responsible for differences in the whole muscle mechanical properties. Experiments were carried out in situ in blood perfused dog skeletal muscles at approximately normal body temperature between 36° and 38°C. The following mechanical relationships were studied using a pneumatic muscle lever to measure Tension (P), length (L) and dP/dt: and dL/dt with a high frequency oscillograph (500-1000 Hz): 1.) Length:Tension; 2.) Force:Velocity; and 3.) Stress:Strain of Series Elastic. Electron microscopy and fiber typing were done as adjunctive studies. Muscles were stimulated by direct nerve stimulation with 0.1msec stimuli at a rate of 1 impulse per second for twitch contractions, or in 200 msec bursts of 100 Hz 0.1 msec stimuli for brief tetanic contractions. The pennate short fibered gastrocnemius plantaris developed 1.0 kg/g of tension during brief tetanic stimulation, at optimal length (Lo) with full stimulus voltage, while the parallel long fibered semitendinosus developed 0.5 kg/g under the same conditions. The Length:Tension relationship for these two muscles was qualitatively similar but quantitatively different. The Force:Velocity relationship (ΔL/L0 vs. P/P0) for both muscles were also qualitatively similar and could be described by the previously proposed rectangular hyperbola but a better predicted fit to the observed data could be produced by adding a descending exponential function to the rectangular hyperbola. Unlike previous studies, the Stress:Strain properties of the series elastic component measured by quick release (ΔL/Li vs. ΔP/Po) were linear and gastrocnemius was 25 per cent higher than the semitendinosus. Overall, both muscles were found to have mechanical properties that differed little from the previously reported literature for amphibian, cardiac and small mammalian muscles studied by others in vitro. The major differences that we found were in the shapes of the force:velocity curve of the contractile component, and the Stress:Strain curve of series elastic component. Equations and explanations for these differences are devised and presented.

6.
J Exp Bot ; 73(18): 6367-6379, 2022 10 18.
Article in English | MEDLINE | ID: mdl-35716106

ABSTRACT

Recent work has identified several proteins involved in starch granule initiation, the first step of starch synthesis. However, the degree of conservation in the granule initiation process remains poorly understood, especially among grass species differing in patterns of carbohydrate turnover in leaves, and granule morphology in the endosperm. We therefore compared mutant phenotypes of Hordeum vulgare (barley), Triticum turgidum (durum wheat), and Brachypodium distachyon defective in PROTEIN TARGETING TO STARCH 2 (PTST2), a key granule initiation protein. We report striking differences across species and organs. Loss of PTST2 from leaves resulted in fewer, larger starch granules per chloroplast and normal starch content in wheat, fewer granules per chloroplast and lower starch content in barley, and almost complete loss of starch in Brachypodium. The loss of starch in Brachypodium leaves was accompanied by high levels of ADP-glucose and detrimental effects on growth and physiology. Additionally, we found that loss of PTST2 increased granule initiation in Brachypodium amyloplasts, resulting in abnormal compound granule formation throughout the seed. These findings suggest that the importance of PTST2 varies greatly with the genetic and developmental background and inform the extent to which the gene can be targeted to improve starch in crops.


Subject(s)
Brachypodium , Hordeum , Starch Synthase , Starch/metabolism , Starch Synthase/genetics , Endosperm/metabolism , Hordeum/genetics , Hordeum/metabolism , Triticum/genetics , Triticum/metabolism , Glucose/metabolism , Adenosine Diphosphate/metabolism
7.
FEMS Microbiol Lett ; 369(1)2022 05 05.
Article in English | MEDLINE | ID: mdl-35323924

ABSTRACT

Ammonia-oxidising archaea (AOA) are environmentally important microorganisms involved in the biogeochemical cycling of nitrogen. Routine cultivation of AOA is exclusively performed in liquid cultures and reports on their growth on solid medium are scarce. The ability to grow AOA on solid medium would be beneficial for not only the purification of enrichment cultures but also for developing genetic tools. The aim of this study was to develop a reliable method for growing individual colonies from AOA cultures on solid medium. Three phylogenetically distinct AOA strains were tested: 'Candidatus Nitrosocosmicus franklandus C13', Nitrososphaera viennensis EN76 and 'Candidatus Nitrosotalea sinensis Nd2'. Of the gelling agents tested, agar and Bacto-agar severely inhibited growth of all three strains. In contrast, both 'Ca. N. franklandus C13' and N. viennensis EN76 tolerated Phytagel™ while the acidophilic 'Ca. N. sinensis Nd2' was completely inhibited. Based on these observations, we developed a Liquid-Solid (LS) method that involves immobilising cells in Phytagel™ and overlaying with liquid medium. This approach resulted in the development of visible distinct colonies from 'Ca. N. franklandus C13' and N. viennensis EN76 cultures and lays the groundwork for the genetic manipulation of this group of microorganisms.


Subject(s)
Ammonia , Archaea , Agar , Archaea/genetics , Culture Media , Nitrification , Oxidation-Reduction , Phylogeny , Soil Microbiology
8.
Plant Cell ; 33(7): 2296-2319, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34009390

ABSTRACT

Flower development is an important determinant of grain yield in crops. In wheat (Triticum spp.), natural variation for the size of spikelet and floral organs is particularly evident in Triticum turgidum ssp. polonicum (also termed Triticum polonicum), a tetraploid subspecies of wheat with long glumes, lemmas, and grains. Using map-based cloning, we identified VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), which encodes a MADS-box transcription factor belonging to the SHORT VEGETATIVE PHASE family, as the gene underlying the T. polonicum long-glume (P1) locus. The causal P1 mutation is a sequence rearrangement in intron-1 that results in ectopic expression of the T. polonicum VRT-A2 allele. Based on allelic variation studies, we propose that the intron-1 mutation in VRT-A2 is the unique T. polonicum subspecies-defining polymorphism, which was later introduced into hexaploid wheat via natural hybridizations. Near-isogenic lines differing for the P1 locus revealed a gradient effect of P1 across spikelets and within florets. Transgenic lines of hexaploid wheat carrying the T. polonicum VRT-A2 allele show that expression levels of VRT-A2 are highly correlated with spike, glume, grain, and floral organ length. These results highlight how changes in expression profiles, through variation in cis-regulation, can affect agronomic traits in a dosage-dependent manner in polyploid crops.


Subject(s)
Polyploidy , Triticum/genetics , Ectopic Gene Expression/genetics , Ectopic Gene Expression/physiology , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
9.
New Phytol ; 230(6): 2371-2386, 2021 06.
Article in English | MEDLINE | ID: mdl-33714222

ABSTRACT

Starch granule initiation is poorly understood at the molecular level. The glucosyltransferase, STARCH SYNTHASE 4 (SS4), plays a central role in granule initiation in Arabidopsis leaves, but its function in cereal endosperms is unknown. We investigated the role of SS4 in wheat, which has a distinct spatiotemporal pattern of granule initiation during grain development. We generated TILLING mutants in tetraploid wheat (Triticum turgidum) that are defective in both SS4 homoeologs. The morphology of endosperm starch was examined in developing and mature grains. SS4 deficiency led to severe alterations in endosperm starch granule morphology. During early grain development, while the wild-type initiated single 'A-type' granules per amyloplast, most amyloplasts in the mutant formed compound granules due to multiple initiations. This phenotype was similar to mutants deficient in B-GRANULE CONTENT 1 (BGC1). SS4 deficiency also reduced starch content in leaves and pollen grains. We propose that SS4 and BGC1 are required for the proper control of granule initiation during early grain development that leads to a single A-type granule per amyloplast. The absence of either protein results in a variable number of initiations per amyloplast and compound granule formation.


Subject(s)
Starch Synthase , Endosperm/genetics , Plant Proteins/genetics , Plastids/genetics , Starch , Starch Synthase/genetics , Triticum/genetics
10.
R Soc Open Sci ; 8(1): 201566, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33614088

ABSTRACT

Personal contacts drive COVID-19 infections. After being closed (23 March 2020) UK primary schools partially re-opened on 1 June 2020 with social distancing and new risk mitigation strategies. We conducted a structured expert elicitation of teachers to quantify primary school contact patterns and how contact rates changed upon re-opening with risk mitigation measures in place. These rates, with uncertainties, were determined using a performance-based algorithm. We report mean number of contacts per day for four cohorts within schools, with associated 90% confidence ranges. Prior to lockdown, younger children (Reception and Year 1) made 15 contacts per day [range 8.35] within school, older children (Year 6) 18 contacts [range 5.55], teaching staff 25 contacts [range 4.55] and non-classroom staff 11 contacts [range 2.27]. After re-opening, the mean number of contacts was reduced by 53% for young children, 62% for older children, 60% for classroom staff and 64% for other staff. Contacts between teaching and non-teaching staff reduced by 80%. The distributions of contacts per person are asymmetric with heavy tail reflecting a few individuals with high contact numbers. Questions on risk mitigation and supplementary structured interviews elucidated how new measures reduced daily contacts in-school and contribute to infection risk reduction.

11.
J Leukoc Biol ; 108(4): 1369-1378, 2020 10.
Article in English | MEDLINE | ID: mdl-32392635

ABSTRACT

Human NK cells are effectors of the innate immune system that originate from hematopoietic precursors in the bone marrow. While stromal cell lines that support NK cell development from hematopoietic precursors are often used to generate mature NK cells from lymphoid precursors in vitro, the nature of contributing factors of these stromal cells to the generation of functionally mature NK cells has been poorly described. Previous studies have shown that developing NK cells adhere to, and migrate on, developmentally supportive stroma. Here, we describe the generation of cell-derived matrices (CDMs) from a commonly used murine fetal liver stromal cell line. These CDMs are derived directly from the same EL08.1D2 stromal cell line known to support NK cell differentiation and contain ECM structural components fibronectin and collagen. We demonstrate that CDMs support NK cell adhesion and migration with similar properties as intact cells. Further, we show that CDMs support NK cell maturation from lymphoid precursors in vitro, albeit with reduced cell survival compared to intact cell-based differentiation. Together, these results describe a cell-free system that supports NK cell development and that can serve as a useful model for studying the nature of the biochemical interactions between NK cell developmental intermediates and developmentally supportive substrates.


Subject(s)
Cell Differentiation/immunology , Cell Movement/immunology , Extracellular Matrix/immunology , Killer Cells, Natural/immunology , Models, Immunological , Cell Line , Humans
12.
Mol Biol Cell ; 31(10): 981-991, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32352896

ABSTRACT

Lymphocyte development is a complex and coordinated pathway originating from pluripotent stem cells during embryogenesis and continuing even as matured lymphocytes are primed and educated in adult tissue. Hematopoietic stem cells develop in a specialized niche that includes extracellular matrix and supporting stromal and endothelial cells that both maintain stem cell pluripotency and enable the generation of differentiated cells. Cues for lymphocyte development include changes in integrin-dependent cell motility and adhesion which ultimately help to determine cell fate. The capacity of lymphocytes to adhere and migrate is important for modulating these developmental signals both by regulating the cues that the cell receives from the local microenvironment as well as facilitating the localization of precursors to tissue niches throughout the body. Here we consider how changing migratory and adhesive phenotypes contribute to human natural killer (NK)- and T-cell development as they undergo development from precursors to mature, circulating cells and how our understanding of this process is informed by in vitro models of T- and NK cell generation.


Subject(s)
Cell Movement , Cell Polarity , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/cytology , T-Lymphocytes/cytology , Animals , Cell Adhesion , Humans
13.
Carbohydr Polym ; 223: 115044, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31427007

ABSTRACT

Inulin nanoparticles (INNPs) are a biocompatible material which has a potential application for enhancing solubility and preventing degradation of compounds. In this work, we demonstrated that INNPs could be synthesized from sucrose using inulosucrase from Lactobacillus reuteri 121. Noticeably, dynamic light scattering (DLS) analysis showed that the derived INNPs exhibited uniformity in size, which was easily controlled by the reaction temperature. The effect of enzyme and sucrose concentration, as well as reaction time, was explored. Moreover, the solubility of INNPs in various organic solvents was also investigated, and we found that the INNPs were freely regenerated in water even though they had precipitated by organic solvents. Essentially, we demonstrated that the derived INNPs could be applied for flavonoid encapsulation. The solubility and stability of quercetin and fisetin in the INNPs complexes was higher than those of free compounds. These results make the INNPs very promising for many applications.


Subject(s)
Flavonoids/chemistry , Hexosyltransferases/metabolism , Inulin/biosynthesis , Limosilactobacillus reuteri/enzymology , Nanoparticles/chemistry , Quercetin/chemistry , Flavonols , Hydrogen-Ion Concentration , Inulin/chemistry , Particle Size , Solubility , Temperature
14.
Mol Biol Cell ; 28(25): 3573-3581, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29021341

ABSTRACT

Human natural killer (NK) cells are generated from CD34+ precursors and can be differentiated in vitro by coculture with developmentally supportive stromal cells. We have previously described the acquisition of cell migration as a feature of NK cell terminal maturation in this system. Here we perform continuous long-term imaging and tracking of NK cell progenitors undergoing in vitro differentiation. We demonstrate that NK cell precursors can be tracked over long time periods on the order of weeks by utilizing phase-contrast microscopy and show that these cells acquire increasing motility as they mature. Additionally, we observe that NK cells display a more heterogeneous range of migratory behaviors at later stages of development, with the acquisition of complex modes of migration that are associated with terminal maturation. Together these data demonstrate previously unknown migratory behaviors of innate lymphocytes undergoing lineage differentiation revealed by long-term imaging and analysis workflows.


Subject(s)
Cell Differentiation/physiology , Cell Movement/physiology , Killer Cells, Natural/metabolism , Antigens, CD34 , Cell Culture Techniques/methods , Cell Lineage/physiology , Cells, Cultured , Coculture Techniques , Hematopoietic Stem Cells/metabolism , Humans , Lymphocyte Activation/physiology , Lymphocytes/metabolism , Stromal Cells/metabolism
15.
Ann R Coll Surg Engl ; 99(4): 259-264, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28349755

ABSTRACT

The management of advanced prostate cancer remains challenging. Traditionally, radical prostatectomy was discouraged in patients with locally advanced or node positive disease owing to the increased complication rate and treatment related morbidity. However, technical advances and refinements in surgical techniques have enabled the outcomes for patients with high risk prostate cancer to be improved. More recently, the concept of cytoreductive prostatectomy has been described where surgery (often Combined with an extended lymph node dissection) is performed in the setting of metastatic disease. Indirect evidence suggests an advantage using the cytoreductive approach. Hypothetical explanations for this observed benefit include decreased tumour burden, immune modulation, improved response to secondary treatment and avoidance of secondary complications attributable to local tumour growth. Nevertheless, prospective trials are required to investigate this further.


Subject(s)
Cytoreduction Surgical Procedures , Lymph Nodes/pathology , Prostatectomy , Prostatic Neoplasms/surgery , Humans , Lymph Node Excision , Lymphatic Metastasis , Male , Neoplasm Metastasis , Prostatic Neoplasms/pathology
16.
Viruses ; 9(3)2017 03 09.
Article in English | MEDLINE | ID: mdl-28282930

ABSTRACT

Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms globally, leading to large-scale fish kills that have severe ecological and economic implications. For the model haptophyte, Emiliania huxleyi, it has been shown that large dsDNA viruses play an important role in regulating blooms and therefore biogeochemical cycling, but much less work has been done looking at viruses that infect P. parvum, or the role that these viruses may play in regulating harmful algal blooms. In this study, we report the isolation and characterization of a lytic nucleo-cytoplasmic large DNA virus (NCLDV) collected from the site of a harmful P. parvum bloom. In subsequent experiments, this virus was shown to infect cultures of Prymnesium sp. and showed phylogenetic similarity to the extended Megaviridae family of algal viruses.


Subject(s)
DNA, Viral/genetics , DNA/genetics , Giant Viruses/classification , Giant Viruses/isolation & purification , Haptophyta/virology , Giant Viruses/genetics , Phylogeny , Sequence Analysis, DNA
17.
J Biol Chem ; 291(41): 21531-21540, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27531751

ABSTRACT

GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential.


Subject(s)
Bacterial Proteins/chemistry , Glucosyltransferases/chemistry , Streptomyces coelicolor/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Mutagenesis, Site-Directed , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Streptomyces coelicolor/genetics
18.
Biochemistry ; 55(23): 3270-84, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27221142

ABSTRACT

Actinomycetes, such as mycobacteria and streptomycetes, synthesize α-glucan with α-1,4 linkages and α-1,6 branching to help evade immune responses and to store carbon. α-Glucan is thought to resemble glycogen except for having shorter constituent linear chains. However, the fine structure of α-glucan and how it can be defined by the maltosyl transferase GlgE and branching enzyme GlgB were not known. Using a combination of enzymolysis and mass spectrometry, we compared the properties of α-glucan isolated from actinomycetes with polymer synthesized in vitro by GlgE and GlgB. We now propose the following assembly mechanism. Polymer synthesis starts with GlgE and its donor substrate, α-maltose 1-phosphate, yielding a linear oligomer with a degree of polymerization (∼16) sufficient for GlgB to introduce a branch. Branching involves strictly intrachain transfer to generate a C chain (the only constituent chain to retain its reducing end), which now bears an A chain (a nonreducing end terminal branch that does not itself bear a branch). GlgE preferentially extends A chains allowing GlgB to act iteratively to generate new A chains emanating from B chains (nonterminal branches that themselves bear a branch). Although extension and branching occur primarily with A chains, the other chain types are sometimes extended and branched such that some B chains (and possibly C chains) bear more than one branch. This occurs less frequently in α-glucans than in classical glycogens. The very similar properties of cytosolic and capsular α-glucans from Mycobacterium tuberculosis imply GlgE and GlgB are sufficient to synthesize them both.


Subject(s)
Glucans/chemistry , Glucans/metabolism , Glucosyltransferases/metabolism , Mycobacterium/metabolism , Streptomycetaceae/metabolism , Sugar Phosphates/metabolism , Electrophoresis, Capillary , Magnetic Resonance Spectroscopy , Mycobacterium/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Acta Physiol (Oxf) ; 217(4): 311-24, 2016 08.
Article in English | MEDLINE | ID: mdl-27064138

ABSTRACT

AIM: Brown and beige adipose tissues dissipate energy in the form of heat via mitochondrial uncoupling protein 1, defending against hypothermia and potentially obesity. The latter has prompted renewed interest in understanding the processes involved in browning to realize the potential therapeutic benefits. To characterize the temporal profile of cold-induced changes and browning of brown and white adipose tissues in mice. METHODS: Male C57BL/6J mice were singly housed in conventional cages under cold exposure (4 °C) for 1, 2, 3, 4, 5 and 7 days. Food intake and body weight were measured daily. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous (sWAT) and epididymal white adipose tissue (eWAT) were harvested for histological, immunohistochemical, gene and protein expression analysis. RESULTS: Upon cold exposure, food intake increased, whilst body weight and adipocyte size were found to be transiently reduced. iBAT mass was found to be increased, whilst sWAT and eWAT were found to be transiently decreased. A combination of morphological, genetic (Ucp-1, Pgc-1α and Elov13) and biochemical (UCP-1, PPARγ and aP2) analyses demonstrated the depot-specific remodelling in response to cold exposure. CONCLUSION: Our results demonstrate the differential responses to cold-induced changes across discrete BAT and WAT depots and support the notion that the effects of short-term cold exposure are achieved by expansion, activation and increasing thermogenic capacity of iBAT, as well as browning of sWAT and, to a lesser extent, eWAT.


Subject(s)
Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Cold Temperature , Adaptation, Physiological/physiology , Adipocytes/ultrastructure , Animals , Body Weight/physiology , Eating/physiology , Epididymis/metabolism , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Subcutaneous Fat/physiology , Thermogenesis
20.
Microbiology (Reading) ; 162(7): 1208-1219, 2016 07.
Article in English | MEDLINE | ID: mdl-27121970

ABSTRACT

The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like α-glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give α-maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend α-1,4-linked maltooligosaccharides, which are thought to be branched with α-1,6 linkages. The genome of Streptomyces venezuelae contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including glgC and glgA of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of α-glucan deposition. A constructed ΔglgE null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated α-maltose 1-phosphate and maltose but no α-glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the ΔglgE mutant on galactose and that of a Δpep2 mutant on maltose were analysed. In both cases, neither accumulation of α-maltose 1-phosphate/α-glucan nor a developmental delay was observed. Thus, high levels of α-maltose 1-phosphate are responsible for the developmental phenotype of the ΔglgE mutant, rather than the lack of α-glucan.


Subject(s)
Glucans/metabolism , Glucosyltransferases/genetics , Spores, Bacterial/growth & development , Streptomyces/growth & development , Sugar Phosphates/metabolism , Glycogen/metabolism , Maltose/metabolism , Oligosaccharides/metabolism , Spores, Bacterial/genetics , Streptomyces/genetics , Trehalose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...