Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 6920, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332845

ABSTRACT

To better define the role of FOXO1 and FOXO3 transcriptional factors in breast carcinogenesis, we performed a comparative study of their expression at both the RNA and protein levels in a series of human breast tumors. We used qRT-PCR assay to quantify mRNA expression and Reverse Phase Protein Arrays (RPPA) to quantify protein expression in 218 breast tumors from patients with known clinical/pathological status and outcome. Weak correlations were observed between mRNA and protein expressions for both FOXO1 and FOXO3 genes. High expression of FOXO3 protein, but not FOXO1 protein, was a good prognostic marker, negatively correlated with KI67 and markers of activity of the PI3K/AKT/mTOR oncogenic pathway, and positively correlated with p53, a marker of apoptosis. Moreover, FOXO3 protein expression, but not FOXO1 protein expression, was also negatively correlated with various proteins involved in different DNA repair mechanisms. FOXO3 protein, but not FOXO1 protein, appears to be a tumor suppressor that inhibits breast cancer by altering DNA damage response (DDR), thereby inducing p53-dependent apoptosis. This antitumor effect appears to be suppressed by excessive activity of the PI3K/AKT/mTOR pathway. High FOXO3 protein expression could be a biomarker of deficient DDR in breast tumors.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/metabolism , Adult , Aged , Aged, 80 and over , Apoptosis/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Cycle/genetics , Cell Proliferation/genetics , DNA Damage/genetics , DNA Repair/genetics , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O3/genetics , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Middle Aged , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
Sci Rep ; 6: 18517, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26729235

ABSTRACT

Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Genomics , Proteome , Transcriptome , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/mortality , Carcinoma, Lobular/diagnosis , Cluster Analysis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Genomics/methods , Humans , Immunohistochemistry , Mutation Rate , Polymorphism, Single Nucleotide , Prognosis , Proteomics , Reproducibility of Results , Transcription Factors/genetics , Transcription Factors/metabolism
3.
BMC Cancer ; 13: 566, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24289328

ABSTRACT

BACKGROUND: DNA methylation is a well-known epigenetic mechanism involved in epigenetic gene regulation. Several genes were reported hypermethylated in CRC, althought no gene marker was proven to be individually of sufficient sensitivity or specificity in routine clinical practice. Here, we identified novel epigenetic markers and assessed their combined use for diagnostic accuracy. METHODS: We used methylation arrays on samples from several effluents to characterize methylation profiles in CRC samples and controls, as established by colonoscopy and pathology findings, and selected two differentially methylated candidate epigenetic genes (NPY, PENK). To this gene panel we added WIF, on the basis of being reported in literature as silenced by promoter hypermethylation in several cancers, including CRC. We measured their methylation degrees by quantitative multiplex-methylation specific PCR (QM-MSP) on 15 paired carcinomas and adjacent non-cancerous colorectal tissues and we subsequently performed a clinical validation on two different series of 266 serums, subdivided in 32 CRC, 26 polyps, 47 other cancers and 161 with normal colonoscopy. We assessed the results by receiver operating characteristic curve (ROC), using cumulative methylation index (CMI) as variable threshold. RESULTS: We obtained CRC detection on tissues with both sensitivity and specificity of 100%. On serum CRC samples, we obtained sensitivity/specificity values of, e.g., 87%/80%, 78%/90% and 59%/95%, and negative predictive value/positive predictive value figures of 97%/47%, 95%/61% and 92%/70%. On serum samples from other cancers we obtained sensitivity/specificity of, e.g, 89%/25%, 43%/80% and 28%/91%. CONCLUSIONS: We showed the potential of NPY, PENK, and WIF1 as combined epigenetic markers for CRC diagnosis, both in tissue and serum and tested their use as serum biomarkers in other cancers. We optimized a QM-MSP for simultaneously quantifying their methylation levels. Our assay can be an effective blood test for patients where CRC risk is present but difficult to assess (e.g. mild symptoms with no CRC family history) and who would therefore not necessarily choose to go for further examination. This panel of markers, if validated, can also be a cost effective screening tool for the detection of asymptomatic cancer patients for colonoscopy.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Enkephalins/genetics , Neuropeptide Y/genetics , Protein Precursors/genetics , Repressor Proteins/genetics , Adenocarcinoma/blood , Adenocarcinoma/diagnosis , Aged , Aged, 80 and over , Case-Control Studies , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , DNA/blood , DNA/genetics , DNA Methylation , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques , Multiplex Polymerase Chain Reaction , Neoplasm Staging , Promoter Regions, Genetic , ROC Curve , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...