Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 64(10): 1581-1587, 2023 10.
Article in English | MEDLINE | ID: mdl-37591545

ABSTRACT

Huntington disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (CAG) trinucleotide expansion in the huntingtin (HTT) gene that encodes the mutant huntingtin protein (mHTT). Visualization and quantification of cerebral mHTT will provide a proxy for target engagement and a means to evaluate therapeutic interventions aimed at lowering mHTT in the brain. Here, we validated the novel radioligand 11C-labeled 6-(5-((5-methoxypyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one (11C-CHDI-180R) using PET imaging to quantify cerebral mHTT aggregates in a macaque model of HD. Methods: Rhesus macaques received MRI-guided intrastriatal delivery of a mixture of AAV2 and AAV2.retro viral vectors expressing an HTT fragment bearing 85 CAG repeats (85Q, n = 5), a control HTT fragment bearing 10 CAG repeats (10Q, n = 4), or vector diluent only (phosphate-buffered saline, n = 5). Thirty months after surgery, 90-min dynamic PET/CT imaging was used to investigate 11C-CHDI-180R brain kinetics, along with serial blood sampling to measure input function and stability of the radioligand. The total volume of distribution was calculated using a 2-tissue-compartment model as well as Logan graphical analysis for regional quantification. Immunostaining for mHTT was performed to corroborate the in vivo findings. Results: 11C-CHDI-180R displayed good metabolic stability (51.4% ± 4.0% parent in plasma at 60 min after injection). Regional time-activity curves displayed rapid uptake and reversible binding, which were described by a 2-tissue-compartment model. Logan graphical analysis was associated with the 2-tissue-compartment model (r 2 = 0.96, P < 0.0001) and used to generate parametric volume of distribution maps. Compared with controls, animals administered the 85Q fragment exhibited significantly increased 11C-CHDI-180R binding in several cortical and subcortical brain regions (group effect, P < 0.0001). No difference in 11C-CHDI-180R binding was observed between buffer and 10Q animals. The presence of mHTT aggregates in the 85Q animals was confirmed histologically. Conclusion: We validated 11C-CHDI-180R as a radioligand to visualize and quantify mHTT aggregated species in a HD macaque model. These findings corroborate our previous work in rodent HD models and show that 11C-CHDI-180R is a promising tool to assess the mHTT aggregate load and the efficacy of therapeutic strategies.


Subject(s)
Huntington Disease , Animals , Huntington Disease/metabolism , Huntingtin Protein/genetics , Positron Emission Tomography Computed Tomography , Macaca mulatta/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Positron-Emission Tomography , Disease Models, Animal
2.
Sci Rep ; 11(1): 17977, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504195

ABSTRACT

Huntington's disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents. We recently reported the development of PET tracers CHDI-180 and CHDI-626 as suitable for imaging mHTT aggregates, and here we present an in-depth pharmacological investigation of their binding characteristics. We have implemented an array of in vitro and ex vivo radiometric binding assays using recombinant HTT, brain homogenate-derived HTT aggregates, and brain sections from mouse HD models and humans post-mortem to investigate binding affinities and selectivity against other pathological proteins from indications such as Alzheimer's disease and spinocerebellar ataxia 1. Radioligand binding assays and autoradiography studies using brain homogenates and tissue sections from HD mouse models showed that CHDI-180 and CHDI-626 specifically bind mHTT aggregates that accumulate with age and disease progression. Finally, we characterized CHDI-180 and CHDI-626 regarding their off-target selectivity and binding affinity to beta amyloid plaques in brain sections and homogenates from Alzheimer's disease patients.


Subject(s)
Huntingtin Protein/metabolism , Huntington Disease/metabolism , Positron-Emission Tomography/methods , Protein Aggregates/genetics , Protein Aggregation, Pathological/diagnostic imaging , Radiopharmaceuticals/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Autoradiography/methods , Brain/metabolism , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntington Disease/pathology , Immunohistochemistry/methods , Mice , Mice, Transgenic , Nitrogen Radioisotopes/metabolism , Radioactive Tracers , Radioligand Assay/methods , Recombinant Proteins/metabolism
3.
J Med Chem ; 64(16): 12003-12021, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34351166

ABSTRACT

The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.


Subject(s)
Brain/diagnostic imaging , Heterocyclic Compounds, 3-Ring/chemistry , Huntingtin Protein/metabolism , Protein Aggregates/physiology , Pyridines/chemistry , Radiopharmaceuticals/chemistry , Alzheimer Disease , Animals , Biomarkers/metabolism , Brain/metabolism , Carbon Radioisotopes/chemistry , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Molecular Structure , Positron-Emission Tomography , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
PLoS One ; 9(2): e87923, 2014.
Article in English | MEDLINE | ID: mdl-24503862

ABSTRACT

Huntington's disease (HD) is a devastating, genetic neurodegenerative disease caused by a tri-nucleotide expansion in exon 1 of the huntingtin gene. HD is clinically characterized by chorea, emotional and psychiatric disturbances and cognitive deficits with later symptoms including rigidity and dementia. Pathologically, the cortico-striatal pathway is severely dysfunctional as reflected by striatal and cortical atrophy in late-stage disease. Brain-derived neurotrophic factor (BDNF) is a neuroprotective, secreted protein that binds with high affinity to the extracellular domain of the tropomyosin-receptor kinase B (TrkB) receptor promoting neuronal cell survival by activating the receptor and down-stream signaling proteins. Reduced cortical BDNF production and transport to the striatum have been implicated in HD pathogenesis; the ability to enhance TrkB signaling using a BDNF mimetic might be beneficial in disease progression, so we explored this as a therapeutic strategy for HD. Using recombinant and native assay formats, we report here the evaluation of TrkB antibodies and a panel of reported small molecule TrkB agonists, and identify the best candidate, from those tested, for in vivo proof of concept studies in transgenic HD models.


Subject(s)
Antibodies, Monoclonal/pharmacology , Huntington Disease/metabolism , Receptor, trkB/agonists , Receptor, trkB/metabolism , Animals , Antibodies, Monoclonal/chemistry , Brain-Derived Neurotrophic Factor/metabolism , Cell Death/drug effects , Cell Line , Cells, Cultured , Corpus Striatum/cytology , Corpus Striatum/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Huntington Disease/drug therapy , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Rats , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...