Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930902

ABSTRACT

The current study focused on the design of an extremely sensitive electrochemical sensor of ascorbic acid based on a mixture of NiAl2O4-NiO nanoparticles that, produced in a single step using the sol-gel method, on an ITO electrode. This new sensing platform is useful for the detection of ascorbic acid with a wide range of concentrations extending from the attomolar to the molar. SEM micrographs show the porous structure of the NiAl2O4-NiO sample, with a high specific surface area, which is beneficial for the catalytic performance of the nanocomposite. An XRD diffractogram confirmed the existence of two phases, NiAl2O4 and NiO, both corresponding to the face-centred cubic crystal structure. The performances of the modified electrode, as a biomolecule, in the detection of ascorbic acid was evaluated electrochemically by cyclic voltammetry and chronoamperometry. The sensor exhibited a sensitive electrocatalytic response at a working potential of E = +0.3 V vs. Ag/Ag Cl, reaching a steady-state current within 30 s after each addition of ascorbic acid solution with a wide dynamic range of concentrations extending from attolevels (10-18 M) to molar (10 mM) and limits of detection and quantification of 1.2 × 10-18 M and 3.96 × 10-18 M, respectively. This detection device was tested for the quantification of ascorbic acid in a 500 mg vitamin C commercialized tablet that was not pre-treated.

2.
Environ Sci Pollut Res Int ; 29(44): 67159-67169, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35522414

ABSTRACT

This work is devoted to the development of Ag-ZnO/sepiolite photocatalysts as novel nanostructured materials by the immobilization of Ag-doped ZnO on the surface of fibrous clay. Herein, innovative Ag-ZnO/sepiolite photocatalysts were successfully prepared through a simple hydrothermal route using diverse Ag dopant concentrations (2 and 5%). Structural, morphological, and optical properties of the obtained photocatalysts were characterized by XRD, TEM, MEB, and DRS-UV-Vis spectroscopy. The results confirmed that Ag-doped ZnO nanoparticles with a diameter of 10-30 nm are homogeneously distributed on the sepiolite fibers' surface. The silver dopant was effectively incorporated into the zinc oxide, leading to a slight distortion of the hexagonal wurtzite structure and a reduction of the bandgap energy with increased silver doping. The photocatalytic activity towards the degradation of methylene blue (MB) dye was analyzed for all the samples under UV-Vis light. Compared to ZnO alone and undoped ZnO/SEP, the Ag-ZnO/SEP5% nanostructured materials exhibited a significantly improved photocatalytic activity, with full decolorization after 4 h of UV-Vis irradiation (60 W). The photocatalysis of organic pollutants matched well with a pseudo-first-order kinetic. The enhanced photocatalytic activity was ascribed to the low bandgap energy (3 eV), the reduction of the recombination of electron hole, and the sepiolite support.

3.
Turk J Chem ; 45(6): 1916-1932, 2021.
Article in English | MEDLINE | ID: mdl-38144586

ABSTRACT

Porous magnetite (Fe3O4) and hematite (α-Fe2O3) nanoparticles were prepared via the sol-gel auto-combustion method. The gels were prepared by reacting ferric nitrates (as oxidants) with starch (as fuel) at an elevated temperature of 200 °C. Different ratios (Φ) of ferric nitrates to starch were used for the synthesis (Φ = fuel/oxidant). The synthesized iron oxides were characterized by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmet-Teller (BET) and vibrating sample magnetometer (VSM) analysis techniques. The crystal structure, morphology, and specific surface area of the iron oxide nanoparticles (Fe3O4 and α-Fe2O3) were found to be dependent on the starch content. The FT-IR, XRD and VSM analysis of the iron oxides for Φ = 0.3 and 0.7 confirmed the formation of the α-Fe2O3 core, whereas at Φ = 1, 1.7, and 2 showed that Fe3O4 cores were formed with the highest saturation magnetization of 60.36 emu/g at Φ = 1. The morphology of the Fe3O4 nanoparticles exhibited a quasi-spherical shape, while α-Fe2O3 nanoparticles appeared polygonal and formed clusters. The highest specific surface area was found to be 48 m2 g-1 for Φ = 1.7 owing to the rapid thermal decomposition process. Type II and type III isotherms indicated mesoporous structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...