Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Hum Mol Genet ; 10(22): 2557-67, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-11709543

ABSTRACT

The X-linked dominant and male-lethal disorder incontinentia pigmenti (IP) is caused by mutations in a gene called NEMO (IKK-gamma). We recently reported the structure of NEMO and demonstrated that most IP patients carry an identical deletion that arises due to misalignment between repeats. Affected male abortuses with the IP deletion had provided clues that a second, incomplete copy of NEMO was present in the genome. We have now identified clones containing this truncated copy (Delta NEMO) and incorporated them into a previously constructed physical contig in distal Xq28. Delta NEMO maps 22 kb distal to NEMO and only contains exons 3-10, confirming our proposed model. A sequence of 26 kb 3' of the NEMO coding sequence is also present in the same position relative to the Delta NEMO locus, bringing the total length of the duplication to 35.5 kb. The LAGE2 gene is also located within this duplicated region, and a similar but unique LAGE1 gene is located just distal to the duplicated loci. Mapping and sequence information indicated that the duplicated regions are in opposite orientation. Analysis of the great apes suggested that the NEMO/LAGE2 duplication occurred after divergence of the lineage leading to present day humans, chimpanzees and gorillas, approximately 10-15 million years ago. Intriguingly, despite this substantial evolutionary history, only 22 single nucleotide differences exist between the two copies over the entire 35.5 kb, making the duplications >99% identical. This high sequence identity and the inverted orientations of the two copies, along with duplications of smaller internal sections within each copy, predispose this region to various genomic alterations. We detected four rearrangements that involved NEMO, Delta NEMO or LAGE1 and LAGE2. The high sequence similarity between the two NEMO/LAGE2 copies may be due to frequent gene conversion, as we have detected evidence of sequence transfer between them. Together, these data describe an unusual and complex genomic region that is susceptible to various types of pathogenic and polymorphic rearrangements, including the recurrent lethal deletion associated with IP.


Subject(s)
Antigens, Neoplasm , Chromosome Aberrations , Gene Duplication , Incontinentia Pigmenti/genetics , Membrane Proteins , Protein Serine-Threonine Kinases/genetics , Proteins/genetics , Animals , Antigens, Surface , Blotting, Southern , Chromosome Inversion , DNA/genetics , DNA/isolation & purification , Female , Gene Order , Humans , I-kappa B Kinase , Incontinentia Pigmenti/pathology , Male , Molecular Sequence Data , Primates , Sequence Deletion , X Chromosome/genetics
2.
Am J Hum Genet ; 69(6): 1210-7, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11673821

ABSTRACT

Incontinentia pigmenti (IP), or "Bloch-Sulzberger syndrome," is an X-linked dominant disorder characterized by abnormalities of skin, teeth, hair, and eyes; skewed X-inactivation; and recurrent miscarriages of male fetuses. IP results from mutations in the gene for NF-kappaB essential modulator (NEMO), with deletion of exons 4-10 of NEMO accounting for >80% of new mutations. Male fetuses inheriting this mutation and other "null" mutations of NEMO usually die in utero. Less deleterious mutations can result in survival of males subjects, but with ectodermal dysplasia and immunodeficiency. Male patients with skin, dental, and ocular abnormalities typical of those seen in female patients with IP (without immunodeficiency) are rare. We investigated four male patients with clinical hallmarks of IP. All four were found to carry the deletion normally associated with male lethality in utero. Survival in one patient is explained by a 47,XXY karyotype and skewed X inactivation. Three other patients possess a normal 46,XY karyotype. We demonstrate that these patients have both wild-type and deleted copies of the NEMO gene and are therefore mosaic for the common mutation. Therefore, the repeat-mediated rearrangement leading to the common deletion does not require meiotic division. Hypomorphic alleles, a 47,XXY karyotype, and somatic mosaicism therefore represent three mechanisms for survival of males carrying a NEMO mutation.


Subject(s)
Genes, Lethal/genetics , Incontinentia Pigmenti/genetics , Klinefelter Syndrome/genetics , Mosaicism/genetics , Protein Serine-Threonine Kinases/genetics , Sequence Deletion/genetics , Alleles , Child , Child, Preschool , Dosage Compensation, Genetic , Female , Humans , I-kappa B Kinase , Incontinentia Pigmenti/pathology , Infant , Infant, Newborn , Karyotyping , Male , Meiosis/genetics , Pedigree , Polymerase Chain Reaction , Survival Rate
3.
Hum Mol Genet ; 10(19): 2171-9, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11590134

ABSTRACT

Incontinentia pigmenti (IP) is an X-linked dominant disorder characterized by abnormal skin pigmentation, retinal detachment, anodontia, alopecia, nail dystrophy and central nervous system defects. This disorder segregates as a male lethal disorder and causes skewed X-inactivation in female patients. IP is caused by mutations in a gene called NEMO, which encodes a regulatory component of the IkappaB kinase complex required to activate the NF-kappaB pathway. Here we report the identification of 277 mutations in 357 unrelated IP patients. An identical genomic deletion within NEMO accounted for 90% of the identified mutations. The remaining mutations were small duplications, substitutions and deletions. Nearly all NEMO mutations caused frameshift and premature protein truncation, which are predicted to eliminate NEMO function and cause cell lethality. Examination of families transmitting the recurrent deletion revealed that the rearrangement occurred in the paternal germline in most cases, indicating that it arises predominantly by intrachromosomal misalignment during meiosis. Expression analysis of human and mouse NEMO/Nemo showed that the gene becomes active early during embryogenesis and is expressed ubiquitously. These data confirm the involvement of NEMO in IP and will help elucidate the mechanism underlying the manifestation of this disorder and the in vivo function of NEMO. Based on these and other recent findings, we propose a model to explain the pathogenesis of this complex disorder.


Subject(s)
Carrier Proteins , Gene Deletion , Incontinentia Pigmenti/genetics , Mitogen-Activated Protein Kinases/genetics , Mutation , X Chromosome/physiology , Blotting, Northern , Blotting, Southern , Chromosome Aberrations , Cohort Studies , DNA Primers/chemistry , Exons , Female , Humans , I-kappa B Kinase , Incontinentia Pigmenti/enzymology , Male , Mitogen-Activated Protein Kinases/metabolism , Phenotype , Polymerase Chain Reaction , Polymorphism, Genetic , Reverse Transcriptase Polymerase Chain Reaction
8.
Nature ; 405(6785): 466-72, 2000 May 25.
Article in English | MEDLINE | ID: mdl-10839543

ABSTRACT

Familial incontinentia pigmenti (IP; MIM 308310) is a genodermatosis that segregates as an X-linked dominant disorder and is usually lethal prenatally in males. In affected females it causes highly variable abnormalities of the skin, hair, nails, teeth, eyes and central nervous system. The prominent skin signs occur in four classic cutaneous stages: perinatal inflammatory vesicles, verrucous patches, a distinctive pattern of hyperpigmentation and dermal scarring. Cells expressing the mutated X chromosome are eliminated selectively around the time of birth, so females with IP exhibit extremely skewed X-inactivation. The reasons for cell death in females and in utero lethality in males are unknown. The locus for IP has been linked genetically to the factor VIII gene in Xq28 (ref. 3). The gene for NEMO (NF-kappaB essential modulator)/IKKgamma (IkappaB kinase-gamma) has been mapped to a position 200 kilobases proximal to the factor VIII locus. NEMO is required for the activation of the transcription factor NF-kappaB and is therefore central to many immune, inflammatory and apoptotic pathways. Here we show that most cases of IP are due to mutations of this locus and that a new genomic rearrangement accounts for 80% of new mutations. As a consequence, NF-kappaB activation is defective in IP cells.


Subject(s)
Gene Rearrangement , Incontinentia Pigmenti/genetics , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/genetics , Exons , Female , Humans , I-kappa B Kinase , Incontinentia Pigmenti/embryology , Male , Molecular Sequence Data , Mutation , NF-kappa B/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction
10.
Eur J Hum Genet ; 7(8): 937-40, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10602371

ABSTRACT

The Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disorder of cholesterol biosynthesis characterised by facial dysmorphisms, mental retardation and multiple congenital anomalies. SLOS is caused by mutations of the human Delta7-sterol reductase (DHCR7) gene and, so far, 19 different mutations have been described. Among these, mutations impairing the activity of the C-terminus appear to be the most severe. Here we report the mutational analysis of the DHCR7 gene in nine Italian SLOS patients. The T93M mutation, previously reported in one patient, results the most frequent one (7/18 alleles) in our survey. Furthermore, we identified three novel mutations, two missense mutations (N407Y and E448K), and a 33 bp deletion spanning part of exon 5 and the donor splice site of intron 5.


Subject(s)
Mutation, Missense , Oxidoreductases Acting on CH-CH Group Donors , Oxidoreductases/genetics , Smith-Lemli-Opitz Syndrome/genetics , Adolescent , Alleles , Child, Preschool , Cholesterol/biosynthesis , DNA Mutational Analysis , Face/abnormalities , Female , Gene Deletion , Humans , Infant , Intellectual Disability/genetics , Italy , Male , Pedigree
11.
Cytogenet Cell Genet ; 82(3-4): 210-4, 1998.
Article in English | MEDLINE | ID: mdl-9858819

ABSTRACT

Commercially available human chromosome (HSA) painting probes were hybridized on river buffalo (Bubalus bubalis, 2n = 50) chromosomes by using FISH and R-banding techniques. Clear hybridization FITC-signals revealed extensive conservation of human chromosome regions in this species and demonstrated that human chromosome probes primarily paint euchromatic regions (R-bands). The present results are discussed in the light of previous gene mapping data obtained in river buffalo and ZOO-FISH data in cattle, and in relation to the standard bovine chromosome nomenclatures. In particular, HSA 8, HSA 10, HSA 11, and HSA 16+7 paint, respectively, BBU 1p, BBU 4p, BBU 5p, and BBU 24, which are homoeologous, respectively, to cattle chromosomes 25, 28, 29 and 27. Thus, these river buffalo chromosome arms can serve as markers to resolve discrepancies in the nomenclature of cattle and related species.


Subject(s)
Buffaloes/genetics , Chromosome Mapping , Conserved Sequence , Animals , Base Sequence , Cattle , Chromatin/genetics , Chromosome Banding , DNA Probes , Euchromatin , Humans , In Situ Hybridization, Fluorescence , Metaphase , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...