Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Infect Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836471

ABSTRACT

BACKGROUND: We determined the relationships between cytokine expression in sputum and clinical data to characterise and understand Chronic Obstructive Pulmonary Disease (COPD) exacerbations in COPD patients. METHODS: We measured 30 cytokines in 936 sputum samples, collected at stable state (ST) and exacerbation (EX) visits from 99 participants in the Acute Exacerbation and Respiratory InfectionS in COPD (AERIS) study (NCT01360398, www.clinicaltrials.gov). We determined their longitudinal expression and examined differential expression based on disease status or exacerbation type. RESULTS: Of the cytokines, 17 were suitable for analysis. As for disease states, in EX sputum samples, IL-17A, TNF-α, IL-1ß, and IL-10 were significantly increased compared to ST sputum samples, but a logistic mixed model could not predict disease state. As for exacerbation types, bacteria-associated exacerbations showed higher expression of IL-17A, TNF-α, IL-1ß, and IL-1α. IL-1α, IL-1ß, and TNF-α were identified as suitable biomarkers for bacteria-associated exacerbation. Bacteria-associated exacerbations also formed a cluster separate from other exacerbation types in principal component analysis. CONCLUSIONS: Measurement of cytokines in sputum from COPD patients could help identify bacteria-associated exacerbations based on increased concentrations of IL-1α, IL-1ß, or TNF-α. This finding may provide a point-of-care assessment to distinguish a bacterial exacerbation of COPD from other exacerbation types.

2.
Hum Vaccin Immunother ; 20(1): 2343544, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38655676

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.


What is the context? Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in older adults and the third leading cause of death worldwide.One bacterium in the lungs, non-typeable Haemophilus influenzae (NTHi), is responsible for acute exacerbation of the disease, characterized by an increase in airway wall inflammation and symptoms, leading to high morbidity and mortality.A vaccine targeting NTHi was previously developed but did not show efficacy in reducing exacerbations in COPD patients, probably because the vaccine did not elicit an immune response in the lung mucosae, where the bacteria are located.What is the impact? Parenteral immunization with new vaccines targeting NTHi is able to elicit immune defense at the level of lung mucosae.Now that antibodies can be measured in sputum, new vaccines against COPD exacerbations or other lung infections can be tested for efficacy in the actual target tissue.Also, lung immunity against specific pathogens can now be tested.What is new? We determined that antigen-specific antibodies were present in the lungs after vaccination; these were assessed in sputum after vaccination with NTHi surface antigens.NTHi-specific IgG were present in the lungs and appeared to have arrived there primarily by transudation, a type of leakage from the serum to the lung mucosae.Transudation appeared to be stronger in severe than in moderate COPD patients.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Haemophilus Infections , Haemophilus Vaccines , Haemophilus influenzae , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Pulmonary Disease, Chronic Obstructive , Sputum , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/immunology , Haemophilus Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Sputum/immunology , Sputum/microbiology
3.
Vaccine ; 41(3): 724-734, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36564274

ABSTRACT

The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.


Subject(s)
Aluminum Hydroxide , Meningococcal Vaccines , Adult , Humans , Interferons , Toll-Like Receptor 7 , Antiviral Agents , Vaccines, Conjugate , Adjuvants, Immunologic , Cytokines , Systems Analysis
4.
EMBO Mol Med ; 13(6): e14035, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33998144

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of death from lower respiratory tract infection in infants and children, and is responsible for considerable morbidity and mortality in older adults. Vaccines for pregnant women and elderly which are in phase III clinical studies target people with pre-existing natural immunity against RSV. To investigate the background immunity which will be impacted by vaccination, we single cell-sorted human memory B cells and dissected functional and genetic features of neutralizing antibodies (nAbs) induced by natural infection. Most nAbs recognized both the prefusion and postfusion conformations of the RSV F-protein (cross-binders) while a smaller fraction bound exclusively to the prefusion conformation. Cross-binder nAbs used a wide array of gene rearrangements, while preF-binder nAbs derived mostly from the expansion of B-cell clonotypes from the IGHV1 germline. This latter class of nAbs recognizes an epitope located between Site Ø, Site II, and Site V on the F-protein, identifying an important site of pathogen vulnerability.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Aged , Antibodies, Neutralizing , Antibodies, Viral , Female , Humans , Pregnancy , Viral Fusion Proteins/genetics
5.
Data Brief ; 33: 106499, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33225034

ABSTRACT

Respiratory syncytial virus (RSV) is the primary cause for acute lower respiratory syndrome in children younger than 5 years. Research on B cell repertoires and antibodies binding the RSV fusion protein (RSV F) is of major interest in the development of potential vaccine candidates and therapies. B cell receptors (BCRs) which have higher affinities for a specific antigen are preferentially selected for B cell clonal expansion in germinal center reactions. Consequently, antigen-specific BCR repertoires share common features, as for instance preferential variable gene usage, variable region mutation levels or lengths of the heavy chain complementarity-determining region 3. Since RSV repeatedly infects every person throughout life, memory B cells (MBC) expressing RSV F-binding BCRs circulate in the blood of healthy adults. This dataset of BCR variable region sequence features was derived from single cell-sorted RSV F-directed MBCs of a healthy adult blood donor [1]. The dataset was produced with publicly available data analysis software programs and scripts, which facilitates integration or comparison with antibody sequence repertoire data of different individuals derived with the same or comparable data analysis approaches and tools.

6.
Vaccine ; 38(50): 7916-7927, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33131932

ABSTRACT

Respiratory syncytial virus (RSV) is the major cause of acute lower respiratory illness in children of less than 5 years of age which usually results in hospitalization or even in death. Vaccine development is hampered in consequence of a failed vaccine trial with fatalities in the 1960s. Even though research has been more focused on the RSV fusion protein in its pre-fusion conformation, maternal vaccination with post-fusion protein (post F) was considered as a promising vaccine strategy for passive immunization of babies, because post F preserves very potent neutralizing epitopes. We extensively analyzed post F-binding B cell receptor (BCR) repertoires of three vaccinees who received a post F-subunit vaccine in the context of a first-in-human, Phase 1, randomized, observer-blind, placebo-controlled clinical trial (ClinicalTrials.gov Identifier: NCT02298179). In order to compare the vaccine-induced BCR repertoires with BCR repertoires induced by natural infection, we also analyzed pre F- and post F-binding BCRs isolated from a healthy blood donor with relatively high F-binding memory B cell (MBC) frequencies. Analysis of the vaccine-induced repertoires revealed that preferentially VH4-encoded BCRs were expanded in response to vaccination. Estimation of antigen-driven selection further demonstrated that expanded BCRs accumulated positively selected replacement mutations which substantiated the hypothesis that post F-vaccination induces diversification of VH4-encoded BCRs in germinal centers. Comparison of the vaccine-induced BCR repertoires with clonally related pre and post F-binding BCRs of the healthy blood donor suggested that the vaccine expanded pre/post F cross-reactive MBCs. Interestingly, several vaccine-induced BCRs shared stereotypic VDJ gene junctions with known neutralizing Abs. Once expressed for functional characterization, the selected monoclonal Abs demonstrated the predicted neutralization activities in plaque reduction neutralization assays indicating that the post F-vaccine induced expansion of neutralizing BCRs.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Antibodies, Neutralizing , Antibodies, Viral , Child , Humans , Randomized Controlled Trials as Topic , Receptors, Antigen, B-Cell/genetics , Respiratory Syncytial Virus Infections/prevention & control , Vaccination , Vaccines, Subunit , Viral Fusion Proteins/genetics
7.
Hum Vaccin Immunother ; 14(1): 45-58, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29172945

ABSTRACT

Despite high vaccination coverage worldwide, pertussis has re-emerged in many countries. This randomized, controlled, observer-blind phase I study and extension study in Belgium (March 2012-June 2015) assessed safety and immunogenicity of investigational acellular pertussis vaccines containing genetically detoxified pertussis toxin (PT) (NCT01529645; NCT02382913). 420 healthy adults (average age: 26.8 ± 5.5 years, 60% female) were randomized to 1 of 10 vaccine groups: 3 investigational aP vaccines (containing pertussis antigens PT, filamentous hemagglutinin [FHA] and pertactin [PRN] at different dosages), 6 investigational TdaP (additionally containing tetanus toxoid [TT] and diphtheria toxoid [DT]), and 1 TdaP comparator containing chemically inactivated PT. Antibody responses were evaluated on days 1, 8, 30, 180, 365, and approximately 3 years post-booster vaccination. Cell-mediated immune responses and PT neutralization were evaluated in a subset of participants in pre-selected groups. Local and systemic adverse events (AEs), and unsolicited AEs were collected through day 7 and 30, respectively; serious AEs and AEs leading to study withdrawal were collected through day 365 post-vaccination. Antibody responses against pertussis antigens peaked at day 30 post-vaccination and then declined but remained above baseline level at approximately 3 years post-vaccination. Responses to FHA and PRN were correlated to antigen dose. Antibody responses specific to PT, toxin neutralization activity and persistence induced by investigational formulations were similar or significantly higher than the licensed vaccine, despite lower PT doses. Of 15 serious AEs, none were considered vaccination-related; 1 led to study withdrawal (premature labor, day 364; aP4 group). This study confirmed the potential benefits of genetically detoxified PT antigen. All investigational study formulations were well tolerated.


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Immunization, Secondary/methods , Pertussis Toxin/immunology , Pertussis Vaccine/administration & dosage , Vaccination/methods , Whooping Cough/prevention & control , Adult , Antibodies, Bacterial/analysis , Belgium , Diphtheria-Tetanus-acellular Pertussis Vaccines/adverse effects , Diphtheria-Tetanus-acellular Pertussis Vaccines/genetics , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Female , Humans , Immunity, Cellular , Immunogenicity, Vaccine , Male , Pertussis Toxin/genetics , Pertussis Vaccine/adverse effects , Pertussis Vaccine/genetics , Pertussis Vaccine/immunology , Treatment Outcome , Whooping Cough/blood , Whooping Cough/immunology , Young Adult
8.
Oncotarget ; 5(9): 2750-60, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24809468

ABSTRACT

The inhibition of tumor angiogenesis is one of the main challenges in cancer therapy. With the aim of developing monoclonal antibodies able to inhibit angiogenesis, we immunized mice with proliferating human umbilical vein endothelial cells. We generated a library of monoclonal antibodies able to recognize antigens expressed on endothelial cells and screened the antibodies for their ability to inhibit endothelial cell proliferation, migration, and sprouting in vitro. Here, we show that the antibody, designated as 4E1, is able to neutralize the formation of new vessels both in vitro and in vivo without affecting endothelial cell survival. By mass spectrometry we identified CD93 as the antigen bound by 4E1 and mapped the recognized epitope. CD93 is a transmembrane protein heavily glycosylated preferentially expressed in the vascular endothelium. CD93 silencing by lentiviral-mediated small hairpin RNA expression impairs human endothelial cell proliferation, migration, and sprouting. Altogether these findings reveal 4E1 as a novel antiangiogenic antibody and identify CD93 as a new target suitable for antiangiogenic therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Membrane Glycoproteins/antagonists & inhibitors , Neovascularization, Pathologic/drug therapy , Receptors, Complement/antagonists & inhibitors , Animals , Apoptosis , Blotting, Western , Cell Adhesion , Cell Movement , Cell Proliferation , Cells, Cultured , Female , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Immunoprecipitation , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Fluorescence , Receptors, Complement/immunology , Receptors, Complement/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.
Proc Natl Acad Sci U S A ; 110(35): 14330-5, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23940329

ABSTRACT

Protection against influenza is mediated by neutralizing antibodies, and their induction at high and sustained titers is key for successful vaccination. Optimal B cells activation requires delivery of help from CD4(+) T lymphocytes. In lymph nodes and tonsils, T-follicular helper cells have been identified as the T cells subset specialized in helping B lymphocytes, with interleukin-21 (IL-21) and inducible costimulatory molecule (ICOS1) playing a central role for this function. We followed the expansion of antigen-specific IL-21(+) CD4(+) T cells upon influenza vaccination in adults. We show that, after an overnight in vitro stimulation, influenza-specific IL-21(+) CD4(+) T cells can be measured in human blood, accumulate in the CXCR5(-)ICOS1(+) population, and increase in frequency after vaccination. The expansion of influenza-specific ICOS1(+)IL-21(+) CD4(+) T cells associates with and predicts the rise of functionally active antibodies to avian H5N1. We also show that blood-derived CXCR5(-)ICOS1(+) CD4(+) T cells exert helper function in vitro and support the differentiation of influenza specific B cells in an ICOS1- and IL-21-dependent manner. We propose that the expansion of antigen-specific ICOS1(+)IL-21(+) CD4(+) T cells in blood is an early marker of vaccine immunogenicity and an important immune parameter for the evaluation of novel vaccination strategies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/blood , Influenza, Human/prevention & control , Interleukins , Vaccination
10.
PLoS One ; 8(8): e70620, 2013.
Article in English | MEDLINE | ID: mdl-23976947

ABSTRACT

Understanding the impact that human memory B-cells (MBC), primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA) is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA⁺ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.


Subject(s)
B-Lymphocytes/cytology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Immunologic Memory , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza B virus/chemistry , Influenza, Human/immunology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Separation/methods , Cross Reactions , Flow Cytometry/methods , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza, Human/virology , Protein Binding , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/immunology
11.
Eur J Immunol ; 43(3): 641-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23238926

ABSTRACT

Cross-protection against divergent strains of influenza virus is an objective of various vaccination approaches. B cells cross-neutralizing several influenza A heterosubtypes have been isolated from cultured human memory B cells (MBCs) and plasmablasts early after influenza vaccination or infection. However, a systematic assessment of the frequency of MBCs and plasmablasts in the blood of healthy individuals is lacking. Here, we show that under resting conditions about 45% of human adults never vaccinated nor exposed to avian A/H5N1 influenza have detectable circulating MBCs cross-reacting with H5N1. This proportion rises to 63.3% among subjects with a large pool of MBCs specific for seasonal H1N1 (i.e. frequency ≥1% of total IgG MBCs). Moreover, subjects with high baseline frequencies of H1N1-specific MBCs had an expansion of H5N1-specific MBCs producing H5-neutralizing antibodies already after the first dose of an MF59-adjuvanted H5N1 vaccine. These results suggest that H1N1-specific MBCs contain a subset of cells cross-reacting to H5. We propose that a proportion of human adults have a pool of H5/H1 cross-reactive MBCs that contribute to the rapid rise of the antibody response to divergent influenza strains. This may have implications on vaccination strategies aimed at counteracting future influenza pandemics.


Subject(s)
Immunologic Memory , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adult , Animals , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Cross Reactions/immunology , Humans , Immunoglobulin G/immunology , Influenza Vaccines/administration & dosage
12.
Immun Inflamm Dis ; 1(1): 3-13, 2013 Oct.
Article in English | MEDLINE | ID: mdl-25400913

ABSTRACT

Antigen-specific memory B cells generate anamnestic responses and high affinity antibodies upon re-exposure to pathogens. Attempts to isolate rare antigen-specific memory B cells for in-depth functional analysis at the single-cell level have been hindered by the lack of tools with adequate sensitivity. We applied two independent methods of protein labeling to sensitive and specific ex vivo identification of antigen-specific memory B cells by flow cytometry: stringently controlled amine labeling, and sortagging, a novel method whereby a single nucleophilic fluorochrome molecule is added onto an LPETG motif carried by the target protein. We show that sortagged NadA, a major antigen in the meningococcal serogroup B vaccine, identifies NadA-specific memory B cells with high sensitivity and specificity, comparable to NadA amine-labeled under stringent reaction parameters in a mouse model of vaccination. We distinguish NadA-specific switched MBC induced by vaccination from the background signal contributed by splenic transitional and marginal zone B cells. In conclusion, we demonstrate that protein structural data coupled with sortag technology allows the development of engineered antigens that are as sensitive and specific as conventional chemically labeled antigens in detecting rare MBC, and minimize the possibility of disrupting conformational B cell epitopes.

13.
Vaccine ; 30(27): 4086-94, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22521851

ABSTRACT

Protective antibody responses to a single dose of 2009 pandemic vaccines have been observed in the majority of healthy subjects aged more than 3 years. These findings suggest that immune memory lymphocytes primed by previous exposure to seasonal influenza antigens are recruited in the response to A/H1N1 pandemic vaccines and allow rapid seroconversion. However, a clear dissection of the immune memory components favoring a fast response to pandemic vaccination is still lacking. Here we report the results from a clinical study where antibody, CD4+ T cell, plasmablast and memory B cell responses to one dose of an MF59-adjuvanted A/H1N1 pandemic vaccine were analyzed in healthy adults. While confirming the rapid appearance of antibodies neutralizing the A/H1N1 pandemic virus, we show here that the response is dominated by IgG-switched antibodies already in the first week after vaccination. In addition, we found that vaccination induces the rapid expansion of pre-existing CD4+ T cells and IgG-memory B lymphocytes cross-reactive to seasonal and pandemic A/H1N1 antigens. These data shed light on the different components of the immune response to the 2009 H1N1 pandemic influenza vaccination and may have implications in the design of vaccination strategies against future influenza pandemics.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Immunologic Memory , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Polysorbates/administration & dosage , Squalene/administration & dosage , Adolescent , Adult , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Cross Reactions , Female , Humans , Influenza Vaccines/administration & dosage , Male , Middle Aged , Vaccination/methods , Young Adult
14.
Proc Natl Acad Sci U S A ; 106(19): 7962-7, 2009 May 12.
Article in English | MEDLINE | ID: mdl-19416838

ABSTRACT

Proactive priming before the next pandemic could induce immune memory responses to novel influenza antigens. In an open-label study, we analyzed B cell memory and antibody responses of 54 adults who received 2 7.5-microg doses of MF59-adjuvanted A/Vietnam/1194/2004 clade 1 (H5N1) vaccine. Twenty-four subjects had been previously primed with MF59-adjuvanted or plain clade 0-like A/duck/Singapore/1997 (H5N3) vaccine during 1999-2001. The prevaccination frequency of circulating memory B cells reactive to A/Vietnam/1194/2004 was low in both primed and unprimed individuals. However, at day 21 after boosting, MF59-adjuvanted primed subjects displayed a higher frequency of H5N1-specific memory B cells than plain-primed or unprimed subjects. The immune memory was rapidly mobilized by a single vaccine administration and resulted in high titers of neutralizing antibodies to antigenically diverse clade 0, 1, and 2 H5N1 viruses already at day 7. In general, postvaccination antibody titers were significantly higher in primed subjects than in unprimed subjects. Subjects primed with MF59-adjuvanted vaccine responded significantly better than those primed with plain vaccine, most notably in early induction and duration of cross-reacting antibody responses. After 6 months, high titers of cross-reactive antibody remained detectable among MF59-primed subjects. We conclude that distant priming with clade 0-like H5N3 induces a pool of cross-reactive memory B cells that can be boosted rapidly years afterward by a mismatched MF59-adjuvanted vaccine to generate high titers of cross-reactive neutralizing antibodies rapidly. These results suggest that pre-pandemic vaccination strategies should be considered.


Subject(s)
Adjuvants, Immunologic/pharmacology , B-Lymphocytes/immunology , Immunologic Memory/drug effects , Polysorbates/pharmacology , Squalene/pharmacology , Vaccination , Antibody Formation , Humans , Immunoglobulin G/chemistry , Influenza A Virus, H5N1 Subtype/metabolism , Influenza Vaccines/chemistry , Influenza, Human/prevention & control , Models, Theoretical , Neutralization Tests , Vaccines/immunology
15.
Proc Natl Acad Sci U S A ; 106(10): 3877-82, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19237568

ABSTRACT

Immune responses to vaccination are tested in clinical trials. This process usually requires years especially when immune memory and persistence are analyzed. Markers able to quickly predict the immune response would be very useful, particularly when dealing with emerging diseases that require a rapid response, such as avian influenza. To address this question we vaccinated healthy adults at days 1, 22, and 202 with plain or MF59-adjuvanted H5N1 subunit vaccines and tested both cell-mediated and antibody responses up to day 382. Only the MF59-H5N1 vaccine induced high titers of neutralizing antibodies, a large pool of memory H5N1-specific B lymphocytes, and H5-CD4(+) T cells broadly reactive with drifted H5. The CD4(+) response was dominated by IL-2(+) IFN-gamma(-) IL-13(-) T cells. Remarkably, a 3-fold increase in the frequency of virus-specific total CD4(+) T cells, measurable after 1 dose, accurately predicted the rise of neutralizing antibodies after booster immunization and their maintenance 6 months later. We suggest that CD4(+) T cell priming might be used as an early predictor of the immunogenicity of prepandemic vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Polysorbates/administration & dosage , Squalene/administration & dosage , Adjuvants, Immunologic/pharmacology , Adult , Antibody Formation/drug effects , CD4-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Immunologic , Humans , Immunologic Memory/drug effects , Influenza A Virus, H5N1 Subtype/drug effects , Influenza Vaccines/pharmacology , Neutralization Tests , Phenotype , Polysorbates/pharmacology , Squalene/pharmacology , Th1 Cells/cytology , Th1 Cells/drug effects , Th1 Cells/immunology , Time Factors , Vaccination
16.
FEBS Lett ; 582(17): 2542-8, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-18582465

ABSTRACT

Disabled-2 (DAB2) is an adaptor protein implicated in signal transduction pathways and in protein traffic regulation. Here, we show that DAB2 is highly expressed in human endothelial cells. DAB2 silencing in endothelial cells by lentiviral-mediated small hairpin RNA expression affects cell migration and differentiation into capillary-like structures while increasing cell proliferation and viability. DAB2 knockdown causes activation of the Src-FAK signal pathway, extracellular-signal regulated kinase and c-Jun NH2-terminal kinase activation, and inhibition of p38 phosphorylation. In DAB2 silenced endothelial cells, pharmacological inhibition of Src with its specific inhibitor PP2 abolishes focal adhesion kinase activation and restores differentiation of endothelial cells. These results suggest that DAB2, via Src and focal adhesion signaling, plays a role in human endothelial cell function.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cell Differentiation , Endothelium, Vascular/growth & development , Neovascularization, Physiologic , src-Family Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins , Cell Differentiation/genetics , Cell Movement/genetics , Cells, Cultured , Endothelium, Vascular/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Gene Silencing , Humans , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Morphogenesis , Neovascularization, Physiologic/genetics , RNA, Small Interfering/genetics , Tumor Suppressor Proteins , src-Family Kinases/antagonists & inhibitors
17.
Leuk Lymphoma ; 48(10): 2014-21, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17917969

ABSTRACT

Vascular Endothelial Growth Factor (VEGF)-D is a member of the VEGF family of angiogenic growth factors that activate the Vascular Endothelial Growth Factor Receptor (VEGFR)-2 and VEGFR-3, which are mainly expressed in blood and lymphatic vessels. Here we have analyzed by using monoclonal antibodies, the expression of VEGF-D and its cognate receptor VEGFR-3 in normal and pathologic bone marrow and lymph node biopsies. This analysis revealed that VEGF-D is expressed in B cells of the germinal centers, scattered B and T blasts, myeloid progenitors, acute leukemia, several types of non Hodgkin lymphoma, and classical Hodgkin's lymphoma. In normal tissues VEGFR-3 was only expressed in fenestrated capillaries of bone marrow and in lymphatic vessels of lymph nodes, while in VEGF-D expressing tumors newly formed vessels, but not malignant cells, showed high VEGFR-3 expression. These data suggest that VEGF-D could contribute to leukemia and lymphoma growth via the induction of angiogenesis in bone marrow and lymphoid tissues.


Subject(s)
Gene Expression Regulation, Leukemic , Gene Expression Regulation, Neoplastic , Hematopoietic Stem Cells/metabolism , Lymphocytes/metabolism , Vascular Endothelial Growth Factor D/biosynthesis , Antibodies, Monoclonal/chemistry , Biopsy , Bone Marrow Cells/metabolism , Cell Line, Tumor , HL-60 Cells , Humans , K562 Cells , Lymph Nodes/pathology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/biosynthesis , Vascular Endothelial Growth Factor Receptor-3/metabolism
18.
Blood ; 109(12): 5371-9, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17332250

ABSTRACT

Human blood contains 2 populations of dendritic cells (DCs): plasmacytoid and myeloid (mDC). mDCs are subdivided into 3 subsets using the surface markers CD16, CD1c, and BDCA-3. Their role as pathogen sentinels and adjuvant targets was tested by phenotypic and functional analysis. We show that mDC subsets are immature and express mRNA for most toll-like receptors (TLRs), except for TLR3 in CD16-mDCs. The most represented subsets, CD16- and CD1c-mDCs, are similarly responsive to all TLR agonists. Among 31 cytokines tested, both subsets produce CXCL8 (IL-8)/tumor necrosis factor-alpha (TNF-alpha)/IL-6/CCL3 (MIP-1 alpha)/CCL4 (MIP-1beta)/IL-1 beta. CXCL8 (IL-8) is the predominant cytokine produced by CD1c-mDCs on TLR engagement, whereas all other cytokines, particularly TNF-alpha, are secreted in 10-fold to 100-fold higher amounts by CD16-mDCs. CD16-mDCs cocultured with human umbilical vein endothelial cells induce a significantly higher production of CXCL10 (IP-10), granulocyte-macrophage colony-stimulating factor, and granulocyte colony-stimulating factor than CD1c-mDCs. In addition, interleukin-3 and type I interferons are stimuli specifically for DC maturation rather than cytokine secretion, whereas TNF-alpha is almost ineffective in inducing either function, suggesting a mechanism of T-cell-DC crosstalk and of rapid induction of antigen-presenting cell function during viral infection rather than inflammation. In conclusion, CD16-mDCs show strong proinflammatory activity, whereas CD1c-mDCs appear to be mainly inducers of chemotaxis.


Subject(s)
Antigens, CD1 , Dendritic Cells/physiology , Receptors, IgG , Cell Communication/immunology , Chemotaxis , Coculture Techniques , Cytokines/biosynthesis , Dendritic Cells/immunology , Endothelial Cells/cytology , Endothelium, Vascular , Humans , Inflammation , Myeloid Cells
19.
J Biol Chem ; 281(26): 17961-7, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16624815

ABSTRACT

Vascular endothelial growth factor (VEGF)-D is a member of the VEGF family of angiogenic growth factors that recognizes and activates the vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 on blood and/or lymphatic vessels. We show that in the long bones of newborn mice, VEGF-D and VEGFR-3 are expressed in the osteoblasts of the growing plate. The treatment of primary human osteoblasts with recombinant VEGF-D induces the expression of osteocalcin and the formation of mineralized nodules in a dose-dependent manner. A monoclonal neutralizing antibody, anti-VEGF-D, or silencing of VEGFR-3 by lentiviral-mediated expression of VEGFR-3 small hairpin RNA affects VEGF-D-dependent osteocalcin expression and nodule formation. Moreover, in primary human osteoblasts, VEGF-D expression is under the control of VEGF, and inhibition of VEGF-D/VEGFR-3 signaling, by monoclonal antibodies or VEGFR-3 silencing, affects VEGF-dependent osteoblast differentiation. These experiments establish that VEGF-D/VEGFR-3 signaling plays a critical role in osteoblast maturation and suggest that VEGF-D is a downstream effector of VEGF in osteogenesis.


Subject(s)
Osteoblasts/cytology , Osteoblasts/physiology , Osteogenesis/physiology , Vascular Endothelial Growth Factor D/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Aged , Animals , Animals, Newborn , Cell Differentiation/physiology , Cells, Cultured , Endothelium, Vascular/cytology , Female , Humans , Male , Mice , Middle Aged , Osteocalcin/genetics , RNA, Small Interfering , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Umbilical Veins/cytology , Vascular Endothelial Growth Factor D/genetics , Vascular Endothelial Growth Factor D/pharmacology , Vascular Endothelial Growth Factor Receptor-3/genetics
20.
Blood ; 106(10): 3423-31, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16076871

ABSTRACT

Vascular endothelial growth factor receptor-3 (VEGFR-3) plays a key role for the remodeling of the primary capillary plexus in the embryo and contributes to angiogenesis and lymphangiogenesis in the adult. However, VEGFR-3 signal transduction pathways remain to be elucidated. Here we investigated VEGFR-3 signaling in primary human umbilical vein endothelial cells (HUVECs) by the systematic mutation of the tyrosine residues potentially involved in VEGFR-3 signaling and identified the tyrosines critical for its function. Y1068 was shown to be essential for the kinase activity of the receptor. Y1063 signals the receptor-mediated survival by recruiting CRKI/II to the activated receptor, inducing a signaling cascade that, via mitogen-activated protein kinase kinase-4 (MKK4), activates c-Jun N-terminal kinase-1/2 (JNK1/2). Inhibition of JNK1/2 function either by specific peptide inhibitor JNKI1 or by RNA interference (RNAi) demonstrated that activation of JNK1/2 is required for a VEGFR-3-dependent prosurvival signaling. Y1230/Y1231 contributes, together with Y1337, to proliferation, migration, and survival of endothelial cells. Phospho-Y1230/Y1231 directly recruits growth factor receptor-bonus protein (GRB2) to the receptor, inducing the activation of both AKT and extracellular signal-related kinase 1/2 (ERK1/2) signaling. Finally, we observed that Y1063 and Y1230/Y1231 signaling converge to induce c-JUN expression, and RNAi experiments demonstrated that c-JUN is required for growth factor-induced prosurvival signaling in primary endothelial cells.


Subject(s)
Cell Movement/physiology , Cell Proliferation , Endothelial Cells/physiology , Signal Transduction/physiology , Umbilical Veins/physiology , Vascular Endothelial Growth Factor Receptor-3/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Endothelial Cells/cytology , Enzyme Inhibitors/pharmacology , GRB2 Adaptor Protein/metabolism , Humans , Mitogen-Activated Protein Kinases , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-crk/metabolism , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Transduction, Genetic/methods , Umbilical Veins/cytology , Vascular Endothelial Growth Factor Receptor-3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...