Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 30(10): 2121-2139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38416404

ABSTRACT

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Biomarkers, Tumor/genetics , Cell Line, Tumor , Loss of Function Mutation , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Xenograft Model Antitumor Assays
2.
Nat Commun ; 12(1): 4626, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330913

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development.Statement of significancePDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , DNA Damage , Pancreatic Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , RNA/genetics , Repressor Proteins/genetics , Animals , Biocatalysis/drug effects , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/prevention & control , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Enzyme Inhibitors/pharmacology , Female , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/prevention & control , Protein-Arginine N-Methyltransferases/metabolism , RNA/metabolism , RNA Interference , Repressor Proteins/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
3.
J Med Chem ; 63(21): 12957-12977, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33118821

ABSTRACT

Inhibition of glutaminase-1 (GLS-1) hampers the proliferation of tumor cells reliant on glutamine. Known glutaminase inhibitors have potential limitations, and in vivo exposures are potentially limited due to poor physicochemical properties. We initiated a GLS-1 inhibitor discovery program focused on optimizing physicochemical and pharmacokinetic properties, and have developed a new selective inhibitor, compound 27 (IPN60090), which is currently in phase 1 clinical trials. Compound 27 attains high oral exposures in preclinical species, with strong in vivo target engagement, and should robustly inhibit glutaminase in humans.


Subject(s)
Enzyme Inhibitors/chemistry , Glutaminase/antagonists & inhibitors , Triazoles/pharmacokinetics , Administration, Oral , Animals , Cell Line, Tumor , Dogs , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Glutaminase/genetics , Glutaminase/metabolism , Half-Life , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Male , Mice , Microsomes/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/metabolism
4.
Bone Res ; 7: 2, 2019.
Article in English | MEDLINE | ID: mdl-30622831

ABSTRACT

The disability, mortality and costs caused by non-vertebral osteoporotic fractures are enormous. Existing osteoporosis therapies are highly effective at reducing vertebral but not non-vertebral fractures. Cortical bone is a major determinant of non-vertebral bone strength. To identify novel osteoporosis drug targets, we phenotyped cortical bone of 3 366 viable mouse strains with global knockouts of druggable genes. Cortical bone thickness was substantially elevated in Notum -/- mice. NOTUM is a secreted WNT lipase and we observed high NOTUM expression in cortical bone and osteoblasts but not osteoclasts. Three orally active small molecules and a neutralizing antibody inhibiting NOTUM lipase activity were developed. They increased cortical bone thickness and strength at multiple skeletal sites in both gonadal intact and ovariectomized rodents by stimulating endocortical bone formation. Thus, inhibition of NOTUM activity is a potential novel anabolic therapy for strengthening cortical bone and preventing non-vertebral fractures.

5.
Nat Med ; 24(7): 1036-1046, 2018 07.
Article in English | MEDLINE | ID: mdl-29892070

ABSTRACT

Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.


Subject(s)
Neoplasms/pathology , Oxidative Phosphorylation , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Energy Metabolism , Glycolysis/drug effects , HEK293 Cells , Humans , Lactic Acid/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mitochondria/metabolism , Nucleotides/biosynthesis , Tumor Burden , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem Lett ; 26(6): 1503-1507, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26898335

ABSTRACT

Structure based design of a novel class of aminopyrimidine MTH1 (MutT homolog 1) inhibitors is described. Optimization led to identification of IACS-4759 (compound 5), a sub-nanomolar inhibitor of MTH1 with excellent cell permeability and good metabolic stability in microsomes. This compound robustly inhibited MTH1 activity in cells and proved to be an excellent tool for interrogation of the utility of MTH1 inhibition in the context of oncology.


Subject(s)
DNA Repair Enzymes/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , DNA Repair Enzymes/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Phosphoric Monoester Hydrolases/metabolism , Structure-Activity Relationship , Substrate Specificity
7.
J Med Chem ; 59(4): 1440-54, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26061247

ABSTRACT

The bromodomain containing proteins TRIM24 (tripartite motif containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are involved in the epigenetic regulation of gene expression and have been implicated in human cancer. Overexpression of TRIM24 correlates with poor patient prognosis, and BRPF1 is a scaffolding protein required for the assembly of histone acetyltransferase complexes, where the gene of MOZ (monocytic leukemia zinc finger protein) was first identified as a recurrent fusion partner in leukemia patients (8p11 chromosomal rearrangements). Here, we present the structure guided development of a series of N,N-dimethylbenzimidazolone bromodomain inhibitors through the iterative use of X-ray cocrystal structures. A unique binding mode enabled the design of a potent and selective inhibitor 8i (IACS-9571) with low nanomolar affinities for TRIM24 and BRPF1 (ITC Kd = 31 nM and ITC Kd = 14 nM, respectively). With its excellent cellular potency (EC50 = 50 nM) and favorable pharmacokinetic properties (F = 29%), 8i is a high-quality chemical probe for the evaluation of TRIM24 and/or BRPF1 bromodomain function in vitro and in vivo.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Drug Design , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Animals , Benzimidazoles/pharmacokinetics , Carrier Proteins/chemistry , DNA-Binding Proteins , Female , Humans , Methylation , Mice , Molecular Docking Simulation , Nuclear Proteins/chemistry , Protein Binding
8.
Article in English | MEDLINE | ID: mdl-26396593

ABSTRACT

BACKGROUND: Proteins that 'read' the histone code are central elements in epigenetic control and bromodomains, which bind acetyl-lysine motifs, are increasingly recognized as potential mediators of disease states. Notably, the first BET bromodomain-based therapies have entered clinical trials and there is a broad interest in dissecting the therapeutic relevance of other bromodomain-containing proteins in human disease. Typically, drug development is facilitated and expedited by high-throughput screening, where assays need to be sensitive, robust, cost-effective and scalable. However, for bromodomains, which lack catalytic activity that otherwise can be monitored (using classical enzymology), the development of cell-based, drug-target engagement assays has been challenging. Consequently, cell biochemical assays have lagged behind compared to other protein families (e.g., histone deacetylases and methyltransferases). RESULTS: Here, we present a suite of novel chromatin and histone-binding assays using AlphaLISA, in situ cell extraction and fluorescence-based, high-content imaging. First, using TRIM24 as an example, the homogenous, bead-based AlphaScreen technology was modified from a biochemical peptide-competition assay to measure binding of the TRIM24 bromodomain to endogenous histone H3 in cells (AlphaLISA). Second, a target agnostic, high-throughput imaging platform was developed to quantify the ability of chemical probes to dissociate endogenous proteins from chromatin/nuclear structures. While overall nuclear morphology is maintained, the procedure extracts soluble, non-chromatin-bound proteins from cells with drug-target displacement visualized by immunofluorescence (IF) or microscopy of fluorescent proteins. Pharmacological evaluation of these assays cross-validated their utility, sensitivity and robustness. Finally, using genetic and pharmacological approaches, we dissect domain contribution of TRIM24, BRD4, ATAD2 and SMARCA2 to chromatin binding illustrating the versatility/utility of the in situ cell extraction platform. CONCLUSIONS: In summary, we have developed two novel complementary and cell-based drug-target engagement assays, expanding the repertoire of pharmacodynamic assays for bromodomain tool compound development. These assays have been validated through a successful TRIM24 bromodomain inhibitor program, where a micromolar lead molecule (IACS-6558) was optimized using cell-based assays to yield the first single-digit nanomolar TRIM24 inhibitor (IACS-9571). Altogether, the assay platforms described herein are poised to accelerate the discovery and development of novel chemical probes to deliver on the promise of epigenetic-based therapies.

9.
Biochem J ; 466(2): 337-46, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25486442

ABSTRACT

Preventing histone recognition by bromodomains emerges as an attractive therapeutic approach in cancer. Overexpression of ATAD2 (ATPase family AAA domain-containing 2 isoform A) in cancer cells is associated with poor prognosis making the bromodomain of ATAD2 a promising epigenetic therapeutic target. In the development of an in vitro assay and identification of small molecule ligands, we conducted structure-guided studies which revealed a conformationally flexible ATAD2 bromodomain. Structural studies on apo-, peptide-and small molecule-ATAD2 complexes (by co-crystallization) revealed that the bromodomain adopts a 'closed', histone-compatible conformation and a more 'open' ligand-compatible conformation of the binding site respectively. An unexpected conformational change of the conserved asparagine residue plays an important role in driving the peptide-binding conformation remodelling. We also identified dimethylisoxazole-containing ligands as ATAD2 binders which aided in the validation of the in vitro screen and in the analysis of these conformational studies.


Subject(s)
Adenosine Triphosphatases/chemistry , DNA-Binding Proteins/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Histones/chemistry , Isoxazoles/chemistry , Peptide Fragments/chemistry , Protein Processing, Post-Translational , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Biotinylation , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Histones/antagonists & inhibitors , Histones/metabolism , Humans , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Kinetics , Ligands , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Pliability , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , meta-Aminobenzoates/chemical synthesis , meta-Aminobenzoates/chemistry , meta-Aminobenzoates/pharmacology
10.
J Med Chem ; 52(20): 6201-4, 2009 Oct 22.
Article in English | MEDLINE | ID: mdl-19785435

ABSTRACT

The prevalence of diabetes throughout the world continues to increase and has become a major health issue. Recently there have been several reports of inhibitors directed toward the sodium-dependent glucose cotransporter 2 (SGLT2) as a method of maintaining glucose homeostasis in diabetic patients. Herein we report the discovery of the novel O-xyloside 7c that inhibits SGLT2 in vitro and urinary glucose reabsorption in vivo.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors , Xylose/analogs & derivatives , Xylose/pharmacology , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/urine , Drug Discovery , Glucose/metabolism , Humans , Mice , Substrate Specificity , Xylose/administration & dosage , Xylose/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...