Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Model Mech ; 11(6)2018 06 19.
Article in English | MEDLINE | ID: mdl-29752279

ABSTRACT

The global incidence of calcific aortic stenosis (CAS) is increasing owing, in part, to a growing elderly population. The condition poses a great challenge to public health, because of the multiple comorbidities of these older patients. Using a rabbit model of CAS, we sought to characterize protein alterations associated with calcified valve tissue that can be ultimately measured in plasma as non-invasive biomarkers of CAS. Aortic valves from healthy and mild stenotic rabbits were analyzed by two-dimensional difference gel electrophoresis, and selected reaction monitoring was used to directly measure the differentially expressed proteins in plasma from the same rabbits to corroborate their potential as diagnostic indicators. Similar analyses were performed in plasma from human subjects, to examine the suitability of these diagnostic indicators for transfer to the clinical setting. Eight proteins were found to be differentially expressed in CAS tissue, but only three were also altered in plasma samples from rabbits and humans: transitional endoplasmic reticulum ATPase, tropomyosin α-1 chain and L-lactate dehydrogenase B chain. Results of receiver operating characteristic curves showed the discriminative power of the scores, which increased when the three proteins were analyzed as a panel. Our study shows that a molecular panel comprising three proteins related to osteoblastic differentiation could have utility as a serum CAS indicator and/or therapeutic target.


Subject(s)
Aortic Valve Stenosis/pathology , Aortic Valve/pathology , Calcinosis/pathology , Aged , Animals , Aortic Valve Stenosis/blood , Biomarkers/blood , Calcinosis/blood , Disease Models, Animal , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Male , Proteomics , ROC Curve , Rabbits , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
PLoS One ; 4(11): e7819, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19915674

ABSTRACT

BACKGROUND: The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKalpha and ChoKbeta isoforms, the first one with two different variants of splicing. Recently ChoKalpha has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKbeta in carcinogenesis has been reported. METHODOLOGY/PRINCIPAL FINDINGS: Here we compare the in vitro and in vivo properties of ChoKalpha1 and ChoKbeta in lipid metabolism, and their potential role in carcinogenesis. Both ChoKalpha1 and ChoKbeta showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKbeta display an ethanolamine kinase role, ChoKalpha1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKalpha1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKbeta overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKalpha1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKbeta mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKalpha1 than ChoKbeta. CONCLUSION/SIGNIFICANCE: This study represents the first evidence of the distinct metabolic role of ChoKalpha and ChoKbeta isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.


Subject(s)
Choline Kinase/physiology , Lipid Metabolism , Neoplasms/enzymology , Alternative Splicing , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Choline Kinase/metabolism , Dogs , Ethanolamines/chemistry , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Kinetics , Neoplasms/metabolism , Phosphorylcholine/chemistry , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL
...