Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 29, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167688

ABSTRACT

Soil microbial communities are dominated by a relatively small number of taxa that may play outsized roles in ecosystem functioning, yet little is known about their capacities to resist and recover from climate extremes such as drought, or how environmental context mediates those responses. Here, we imposed an in situ experimental drought across 30 diverse UK grassland sites with contrasting management intensities and found that: (1) the majority of dominant bacterial (85%) and fungal (89%) taxa exhibit resistant or opportunistic drought strategies, possibly contributing to their ubiquity and dominance across sites; and (2) intensive grassland management decreases the proportion of drought-sensitive and non-resilient dominant bacteria-likely via alleviation of nutrient limitation and pH-related stress under fertilisation and liming-but has the opposite impact on dominant fungi. Our results suggest a potential mechanism by which intensive management promotes bacteria over fungi under drought with implications for soil functioning.


Subject(s)
Ecosystem , Microbiota , Soil , Grassland , Soil Microbiology , Conservation of Natural Resources , Droughts , Bacteria/genetics
2.
Oecologia ; 177(3): 747-759, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25407622

ABSTRACT

Plant communities, through species richness and composition, strongly influence soil microorganisms and the ecosystem processes they drive. To test the effects of other plant community attributes, such as the identity of dominant plant species, evenness, and spatial arrangement, we set up a model mesocosm experiment that manipulated these three attributes in a full factorial design, using three grassland plant species (Anthoxanthum odoratum, Plantago lanceolata, and Lotus corniculatus). The impact of the three community attributes on the soil microbial community structure and functioning was evaluated after two growing seasons by ester-linked phospholipid fatty-acids analysis, substrate-induced respiration, basal respiration, and nitrogen mineralization and nitrification rates. Our results suggested that the dominant species identity had the most prevalent influence of the three community attributes, with significant effects on most of the measured aspects of microbial biomass, composition and functioning. Evenness had no effects on microbial community structure, but independently influenced basal respiration. Its effects on nitrogen cycling depended on the identity of the dominant plant species, indicating that interactions among species and their effects on functioning can vary with their relative abundance. Systems with an aggregated spatial arrangement had a different microbial community composition and a higher microbial biomass compared to those with a random spatial arrangement, but rarely differed in their functioning. Overall, it appears that dominant species identity was the main driver of soil microorganisms and functioning in these model grassland communities, but that other plant community attributes such as evenness and spatial arrangement can also be important.


Subject(s)
Grassland , Lotus , Microbiota , Plantago , Poaceae , Soil Microbiology , Soil , Biomass , Nitrogen , Seasons
3.
Ann Bot ; 114(5): 1011-21, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25122656

ABSTRACT

BACKGROUND AND AIMS: Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. METHODS: In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. KEY RESULTS: Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. CONCLUSIONS: The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Nitrogen/metabolism , Plants/microbiology , Soil Microbiology , Soil/chemistry , Biodiversity , Denitrification , Ecosystem , Grassland , Nitrification , Oxidation-Reduction , Phenotype , Plant Components, Aerial/metabolism , Plant Components, Aerial/microbiology , Plant Roots/metabolism , Plant Roots/microbiology , Plants/metabolism
4.
Oecologia ; 161(1): 1-14, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19412705

ABSTRACT

A growing body of evidence shows that aboveground and belowground communities and processes are intrinsically linked, and that feedbacks between these subsystems have important implications for community structure and ecosystem functioning. Almost all studies on this topic have been carried out from an empirical perspective and in specific ecological settings or contexts. Belowground interactions operate at different spatial and temporal scales. Due to the relatively low mobility and high survival of organisms in the soil, plants have longer lasting legacy effects belowground than aboveground. Our current challenge is to understand how aboveground-belowground biotic interactions operate across spatial and temporal scales, and how they depend on, as well as influence, the abiotic environment. Because empirical capacities are too limited to explore all possible combinations of interactions and environmental settings, we explore where and how they can be supported by theoretical approaches to develop testable predictions and to generalise empirical results. We review four key areas where a combined aboveground-belowground approach offers perspectives for enhancing ecological understanding, namely succession, agro-ecosystems, biological invasions and global change impacts on ecosystems. In plant succession, differences in scales between aboveground and belowground biota, as well as between species interactions and ecosystem processes, have important implications for the rate and direction of community change. Aboveground as well as belowground interactions either enhance or reduce rates of plant species replacement. Moreover, the outcomes of the interactions depend on abiotic conditions and plant life history characteristics, which may vary with successional position. We exemplify where translation of the current conceptual succession models into more predictive models can help targeting empirical studies and generalising their results. Then, we discuss how understanding succession may help to enhance managing arable crops, grasslands and invasive plants, as well as provide insights into the effects of global change on community re-organisation and ecosystem processes.


Subject(s)
Agriculture , Ecosystem , Greenhouse Effect , Models, Biological , Plant Development , Soil Microbiology , Population Dynamics , Species Specificity
5.
Oecologia ; 157(4): 661-73, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18629543

ABSTRACT

We tested the hypothesis that N enrichment modifies plant-soil feedback relationships, resulting in changes to plant community composition. This was done in a two-phase glasshouse experiment. In the first phase, we grew eight annual plant species in monoculture at two levels of N addition. Plants were harvested at senescence and the effect of each species on a range of soil properties was measured. In the second phase, the eight plant species were grown in multi-species mixtures in the eight soils conditioned by the species in the first phase, at both levels of N addition. At senescence, species performance was measured as aboveground biomass. We found that in the first phase, plant species identity strongly influenced several soil properties, including microbial and protist biomass, soil moisture content and the availability of several soil nutrients. Species effects on the soil were mostly independent of N addition and several were strongly correlated with plant biomass. In the second phase, both the performance of individual species and overall community structure were influenced by the interacting effects of the species identity of the previous soil occupant and the rate of N addition. This indicates that N enrichment modified plant-soil feedback. The performance of two species correlated with differences in soil N availability that were generated by the species formerly occupying the soil. However, negative feedback (poorer performance on the soil of conspecifics relative to that of heterospecifics) was only observed for one species. In conclusion, we provide evidence that N enrichment modifies plant-soil feedback relationships and that these modifications may affect plant community composition. Field testing and further investigations into which mechanisms dominate feedback are required before we fully understand how and when feedback processes determine plant community responses to N enrichment.


Subject(s)
Ecosystem , Nitrogen/metabolism , Plant Development , Soil/analysis , Analysis of Variance , Biomass , Soil Microbiology , Species Specificity
6.
Science ; 298(5593): 615-8, 2002 Oct 18.
Article in English | MEDLINE | ID: mdl-12386334

ABSTRACT

Human impacts, including global change, may alter the composition of soil faunal communities, but consequences for ecosystem functioning are poorly understood. We constructed model grassland systems in the Ecotron controlled environment facility and manipulated soil community composition through assemblages of different animal body sizes. Plant community composition, microbial and root biomass, decomposition rate, and mycorrhizal colonization were all markedly affected. However, two key ecosystem processes, aboveground net primary productivity and net ecosystem productivity, were surprisingly resistant to these changes. We hypothesize that positive and negative faunal-mediated effects in soil communities cancel each other out, causing no net ecosystem effects.


Subject(s)
Ecosystem , Soil , Animals , Bacteria/growth & development , Biomass , Body Constitution , Carbon/metabolism , Ecological Systems, Closed , Environment , Fungi/growth & development , Oxygen Consumption , Photosynthesis , Plant Development , Plant Roots/metabolism , Poaceae/growth & development , Population Density , Soil Microbiology
7.
Rapid Commun Mass Spectrom ; 14(15): 1351-5, 2000.
Article in English | MEDLINE | ID: mdl-10920354

ABSTRACT

It is becoming increasingly apparent that soil amino acids are a principal source of nitrogen (N) for certain plants, and especially those of N-limited environments. This study of temperate upland grasslands used glycine-2-(13)C-(15)N and ((15)NH4)(2)SO(4) labelling techniques to test the hypothesis that plant species which dominate 'unimproved' semi-natural grasslands (Festuca-Agrostis-Galium) are able to utilise amino acid N for growth, whereas those plants which dominate 'improved' grasslands (Lolium-Cynosurus), that receive regular applications of inorganic fertiliser, use inorganic N forms as their main N source. Data from field experiments confirmed that 'free' amino acids were more abundant in 'unimproved' than 'improved' grassland and that glycine was the dominant amino acid type (up to 42% of total). Secondly, the injection of representative amounts of glycine-2-(13)C-(15)N (4.76 and 42.86 mM) into intact soil cores from the two grassland types provided evidence of direct uptake of glycine by plants, with both (15)N and (13)C being detected in plant material of both grasslands. Finally, a microcosm experiment demonstrated no preferential uptake of amino acid N by the grasses which dominate the grassland types, namely Holcus lanatus, Festuca rubra, Agrostis capillaris from the 'unimproved' grassland, and Lolium perenne from the 'improved' grassland. Again, both (13)C and (15)N were detected in all grass species suggesting uptake of intact glycine by these plants.


Subject(s)
Amino Acids/analysis , Nitrogen/analysis , Poaceae/chemistry , Carbon Isotopes , Mass Spectrometry , Nitrogen Isotopes , Soil/analysis , United Kingdom
8.
New Phytol ; 148(1): 143-151, 2000 Oct.
Article in English | MEDLINE | ID: mdl-33863041

ABSTRACT

Experiments were set up to assess the relative impacts of grass lamina fragment density, size and quality on the activity and growth of four fungi in a particulate soil-like matrix. The fungi studied were Cladosporium cladosporioides, Fusarium lateritium, Phoma exigua and Trichoderma viride, all of which are common inhabitants of UK upland grassland soils. Resource quality was varied by using three contrasting grasses as sources of lamina fragments: Lolium perenne, Agrostis capillaris and Nardus stricta. All the fungi were able to forage effectively through the soil-like matrix (at a rate of 1-2 ml matrix d-1 ) and colonize and partially decompose available lamina fragments (up to 40% d. wt loss). Foraging rates (ml matrix d-1 ) were affected by lamina fragment species but not by fragment density or size. In general, F. lateritium and T. viride foraged at a faster rate than the other species. Mycelial activity in the soil-like matrix was directly proportional to total lamina fragment availability and was unaffected by fragment size. Biomass production on solid media was also directly related to substrate (carbohydrate) availability. The results indicate that these fungi can adjust their growth patterns in response to fragment density so as to maximize foraging efficiency (energy acquired per unit exploratory biomass production). Differences in lamina fragment species were responsible for up to 50% reduction in mycelial activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...