Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Graph Model ; 126: 108642, 2024 01.
Article in English | MEDLINE | ID: mdl-37797430

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most aggressive and life-threatening cancers. Although multiple treatment options are available, the prognosis of HCC patients is poor due to metastasis and drug resistance. Hence, discovering novel targets is essential for better therapeutic development for HCC. In this study, we used the cancer genome atlas (TCGA) dataset to analyze the expression of bromodomain-containing proteins in HCC, as bromodomains are emerging attractive therapeutic targets. Our analysis identified BRPF1 as the most highly upregulated gene in HCC among the 43 bromodomain-containing genes. Upregulation of BRPF1 was significantly associated with poorer patient survival. Therefore, targeting BRPF1 may be an approach for HCC treatment. Previously, several potential inhibitors of BRPF1 bromodomain have been discovered. However, due to the limited clinical success of the current inhibitors, we aim to search for new inhibitors with high affinity and specificity for the BRPF1 bromodomain. In this study, we utilized high-throughput virtual screening methods to screen synthetic and natural compound databases against the BRPF1 bromodomain. In addition, we used machine learning-based QSAR modeling to predict the IC50 values of the selected BRPF1 bromodomain inhibitors. Extensive MD simulations were used to calculate the binding free energies of BRPF1 bromodomain and inhibitor complexes. Using this approach, we identified four lead scaffolds with a similar or better binding affinity towards the BRPF1 bromodomain than the previously reported inhibitors. Overall, this study discovered some promising compounds that have the potential to act as potent BRPF1 bromodomain inhibitors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Nuclear Proteins/chemistry , DNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Liver Neoplasms/drug therapy
3.
Biochem J ; 480(9): 629-647, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37075063

ABSTRACT

TRIM24 is a multi-functional chromatin reader, and it binds to the estrogen receptor to activate estrogen-dependent target genes associated with tumor development. TRIM24 is known to ubiquitinate p53 via an N-terminal RING domain and binds a specific combinatorial histone signature of H3K4me0/H3K23ac via its C-terminal plant homeodomain (PHD) and bromodomain (Bromo). Aberrant expression of TRIM24 positively correlates with H3K23ac levels, and high levels of both TRIM24 and H3K23ac predict poor survival of breast cancer patients. Little has been explored about the acetylated histone H4 (H4ac) signatures of TRIM24 and their biological functions. Herein, we report novel H4ac binding partners of TRIM24 and their localization in the genome. Isothermal titration calorimetry binding assay on the histone peptides revealed that the TRIM24 PHD-Bromo preferably binds to H4K5ac, H4K8ac, and H4K5acK8ac compared with other acetylated histone H4 ligands. Co-immunoprecipitation on the endogenous histones suggests that the recognition of H4ac by Bromo does not interfere with the recognition of H3K4me0 mark by the PHD domain of TRIM24. Consistent with this, TRIM24 PHD-Bromo exhibits minimal discrimination among H4ac binding partners at endogenous histone and nucleosome levels. Moreover, ChIP-seq analysis revealed that the H4K5ac and H4K8ac histone signatures strongly co-localize near the transcription start sites of different hub genes or TRIM24-targeted genes in breast cancer. In addition, the KEGG pathway analysis demonstrates that the TRIM24 and its H4ac targets are associated with several important biological pathways. Our findings describe that the H4ac recognition by TRIM24 PHD-Bromo enables access to the chromatin for specific transcriptional regulation.


Subject(s)
Breast Neoplasms , Histones , Humans , Female , Histones/metabolism , Chromatin , DNA-Binding Proteins/metabolism , Protein Domains , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Acetylation , Protein Binding , Carrier Proteins/metabolism
4.
Chem Asian J ; 16(21): 3404-3412, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34448544

ABSTRACT

Bromodomains are evolutionarily conserved reader modules that recognize acetylated lysine residues on the histone tails to facilitate gene transcription. The bromodomain and PHD finger containing protein 3 (BRPF3) is a scaffolding protein that forms a tetrameric complex with HBO1 histone acetyltransferase (HAT) and two other subunits, which is known to regulate the HAT activity and substrate specificity. However, its molecular mechanism, histone ligands, and biological functions remain unknown. Herein, we identify mono- (H4K5ac) and di- (H4K5acK12ac) acetylated histone peptides as novel interacting partners of the BRPF3 bromodomain. Consistent with this, pull-down assays on purified histones from human cells confirm the interaction of BRPF3 bromodomain with acetylated histone H4. Further, MD simulation studies highlight the binding mode of acetyllysine (Kac) and the stability of bromodomain-histone peptide complexes. Collectively, our findings provide a key insight into how histone targets of the BRPF3 bromodomain direct the recruitment of HBO1 complex to chromatin for downstream transcriptional regulation.


Subject(s)
Histone Acetyltransferases/metabolism , Histones/metabolism , Acetylation , Histone Acetyltransferases/chemistry , Histones/analysis , Humans , Molecular Dynamics Simulation
5.
Eur J Pharmacol ; 791: 589-594, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27693802

ABSTRACT

Gout is a type of arthritis, which could result from the deposition of monosodium urate crystals in joints. It can cause redness, burning pain, inflammation of joints especially in big toe. In this study, we have looked for anti-arthritic effect of coenzyme Q10 (CoQ10) on monosodium urate crystal-induced inflammation in rats and compared it with that of the non-steroidal anti-inflammatory drug, indomethacin. The evaluation was done by measuring the paw volume, antioxidant status, lipid peroxidation, lysosomal enzymes (ß-glcuronidase, ß-galactosidase, N-acetyl-ß-d-glucosaminidase, acid phosphatase) activities and histopathological studies. Paw volume, the levels of lysosomal enzymes, lipid peroxidation were significantly (P<0.05) increased and the antioxidant activity status was in turn decreased in monosodium urate crystal-induced rats. CoQ10 (10mg/kg/b.w. orally) treated monosodium urate crystal-induced rats showed near normal activities of lysosomal enzymes, reduced levels of lipid peroxidation, near normal paw volume and antioxidant status. CoQ10 was also able to minimize mononuclear cell infiltration and damage to articular cartilage. Current study indicates that CoQ10 possesses anti-inflammatory effect against gouty arthritis and can be used to treat acute form of gouty arthritis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ubiquinone/analogs & derivatives , Uric Acid/chemistry , Uric Acid/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Arthritis, Gouty/complications , Edema/complications , Edema/drug therapy , Edema/metabolism , Female , Inflammation/chemically induced , Inflammation/drug therapy , Lipid Peroxidation/drug effects , Lysosomes/drug effects , Lysosomes/enzymology , Rats , Rats, Wistar , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Uric Acid/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...