Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 13: 822912, 2022.
Article in English | MEDLINE | ID: mdl-35694291

ABSTRACT

Lactic acid bacteria (LAB) are Gram-positive bacteria which are considered for use as adjuvant therapeutics in management of various disease ailments, including obesity, irritable bowel syndrome, lactose intolerance and cancer. To investigate the possible use of Lactococcus lactis strains from our collection in treatment of gastrointestinal cancer, we tested them for the ability to arrest proliferation of human colorectal adenocarcinoma cells (Caco-2). Results of the BrdU assay showed that the anti-proliferative activity of L. lactis cells is strain-specific. We found that particularly, two strains, L. lactis IBB109 and L. lactis IBB417, exhibited the most potent inhibitory effect. Moreover, both strains triggered interleukin 18 gene expression, normally inhibited in Caco-2 (cancer) cells. To examine the probiotic potential of the two strains, we tested them for bile salts and acid tolerance, as well as adhesion properties. Both isolates exhibited probiotic potential-they survived in the presence of 0.3% bile salts and tolerated exposure to low pH and osmotic stress. Notably, we found that L. lactis IBB417 displayed better adherence to mucus and Caco-2 cells than L. lactis IBB109. Additionally, by microdilution tests we confirmed that both strains are sensitive to all nine antibiotics of human and veterinary importance listed by the European Food Safety Authority. Finally, by in silico investigations of whole genome sequencing data, we revealed the genetic features of L. lactis IBB109 and L. lactis IBB417 that can be associated with functional (e.g., adhesion and carbohydrate metabolic genes) and safety (e.g., virulence and antibiotic resistance) aspects of the strains, confirming their health-promoting potential.

2.
Front Microbiol ; 13: 840219, 2022.
Article in English | MEDLINE | ID: mdl-35369496

ABSTRACT

Here, we describe functional characterization of an early gene (gp46) product of a virulent Lactococcus lactis sk1-like phage, vB_Llc_bIBBF13 (abbr. F13). The GP46 F13 protein carries a catalytically active RecA-like domain belonging to the P-loop NTPase superfamily. It also retains features characteristic for ATPases forming oligomers. In order to elucidate its detailed molecular function, we cloned and overexpressed the gp46 gene in Escherichia coli. Purified GP46 F13 protein binds to DNA and exhibits DNA unwinding activity on branched substrates in the presence of adenosine triphosphate (ATP). Size exclusion chromatography with multi-angle light scattering (SEC-MALS) experiments demonstrate that GP46 F13 forms oligomers, and further pull-down assays show that GP46 F13 interacts with host proteins involved in replication (i.e., DnaK, DnaJ, topoisomerase I, and single-strand binding protein). Taking together the localization of the gene and the obtained results, GP46 F13 is the first protein encoded in the early-expressed gene region with helicase activity that has been identified among lytic L. lactis phages up to date.

3.
Viruses ; 12(3)2020 03 03.
Article in English | MEDLINE | ID: mdl-32138347

ABSTRACT

LactococcusCeduovirus (formerly c2virus) bacteriophages are among the three most prevalent phage types reported in dairy environments. Phages from this group conduct a strictly lytic lifestyle and cause substantial losses during milk fermentation processes, by infecting lactococcal host starter strains. Despite their deleterious activity, there are limited research data concerning Ceduovirus phages. To advance our knowledge on this specific phage group, we sequenced and performed a comparative analysis of 10 new LactococcuslactisCeduovirus phages isolated from distinct dairy environments. Host range studies allowed us to distinguish the differential patterns of infection of L. lactis cells for each phage, and revealed a broad host spectrum for most of them. We showed that 40% of the studied Ceduovirus phages can infect both cremoris and lactis strains. A preference to lyse strains with the C-type cell wall polysaccharide genotype was observed. Phage whole-genome sequencing revealed an average nucleotide identity above 80%, with distinct regions of divergence mapped to several locations. The comparative approach for analyzing genomic data and the phage lytic spectrum suggested that the amino acid sequence of the orf8-encoded putative tape measure protein correlates with host range. Phylogenetic studies revealed separation of the sequenced phages into two subgroups. Finally, we identified three types of phage origin of replication regions, and showed they are able to support plasmid replication without additional phage proteins.


Subject(s)
Bacteriophages/physiology , Lactococcus/virology , Plants, Edible/microbiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , Cloning, Molecular , Genome, Viral , Genomics , Host Specificity , Plasmids/genetics , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Virus Physiological Phenomena
4.
Microbiologyopen ; 8(1): e00620, 2019 01.
Article in English | MEDLINE | ID: mdl-29575743

ABSTRACT

The aim of this study was to characterize and compare selected Lactobacillus strains originating from different environments (cow milk and hen feces) with respect to their applicative potential to colonize gastrointestinal track of chickens before hatching from an egg. In vitro phenotypic characterization of lactobacilli strains included the investigation of the important prerequisites for persistence in gastrointestinal tract, such as a capability to survive in the presence of bile salts and at low pH, enzymatic and sugar metabolic profiles, adhesion abilities, and resistance to osmolytes, temperature, and antibiotics. Regarding the resistance of lactobacilli to most of the various stress factors tested, the milk isolate Lactobacillus plantarum IBB3036 showed better abilities than the chicken feces isolate Lactobacillus salivarius IBB3154. However, regarding the acidification tolerance and adherence ability, L. salivarius IBB3154 revealed better characteristics. Use of these two selected lactobacilli isolates together with proper prebiotics resulted in the preparation of two S1 and S2 bioformulations, which were injected in ovo into hen Cobb500 FF fertilized eggs. Furthermore, in vivo tests assessing the persistence of L. plantarum IBB3036 and L. salivarius IBB3154 in the chicken gastrointestinal tract was monitored by PCR-based classical and quantitative techniques and revealed the presence of both strains in fecal samples collected 3 days after hatching. Subsequently, the number of L. salivarius IBB3154 increased significantly in the chicken intestine, whereas the presence of L. plantarum IBB3036 was gradually decreased.


Subject(s)
Gastrointestinal Tract/microbiology , Lactobacillus plantarum/growth & development , Ligilactobacillus salivarius/growth & development , Probiotics/administration & dosage , Animals , Bacterial Adhesion , Bacterial Load , Chickens , Feces/microbiology , Gastrointestinal Diseases/prevention & control , Gastrointestinal Diseases/veterinary , Lactobacillus plantarum/isolation & purification , Ligilactobacillus salivarius/isolation & purification , Microbial Viability , Polymerase Chain Reaction , Poultry Diseases/prevention & control , Time Factors
5.
Front Microbiol ; 9: 794, 2018.
Article in English | MEDLINE | ID: mdl-29740421

ABSTRACT

Titanium dioxide (TiO2) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris), Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological alterations in the most sensitive species, with a putative impact on gut microbiota composition and functioning, especially after chronic exposure.

6.
Biomed Res Int ; 2017: 6747482, 2017.
Article in English | MEDLINE | ID: mdl-28321412

ABSTRACT

Lactic acid bacteria (LAB) are Gram-positive, nonpathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in various LAB species, including Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of a Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using mass spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on chickens and mice. Obtained sera were tested for specific antibodies by ELISA assays. The results of these studies are a promising step toward developing a vaccine against the bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Lactococcus lactis , Animals , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza in Birds/immunology , Influenza in Birds/prevention & control , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Mice
7.
Int J Food Microbiol ; 211: 134-41, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26204235

ABSTRACT

To assess the occurrence of antibiotic-resistant Lactic Acid Bacteria (LAB) in Polish raw milk and fermented artisanal products, a collection comprising 500 isolates from these products was screened. Among these isolates, six strains (IBB28, IBB160, IBB161, IBB224, IBB477 and IBB487) resistant to tetracycline were identified. The strains showing atypical tetracycline resistance were classified as Lactococcus lactis: three of them were identified as L. lactis subsp. cremoris (IBB224, IBB477 and IBB487) and the other three (IBB28, IBB160, IBB161) were identified as L. lactis subsp. lactis. The mechanism involving Ribosomal Protection Proteins (RPP) was identified as responsible for tetracycline resistance. Three of the tested strains (IBB28, IBB160 and IBB224) had genes encoding the TetS protein, whereas the remaining three (IBB161, IBB477 and IBB487) expressed TetM. The results also demonstrated that the genes encoding these proteins were located on genetic mobile elements. The tet(S) gene was found to be located on plasmids, whereas tet(M) was found within the Tn916 transposon.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dairy Products/microbiology , Lactococcus lactis/drug effects , Lactococcus lactis/isolation & purification , Milk/microbiology , Tetracycline Resistance , Tetracycline/pharmacology , Animals , Bioreactors/microbiology , Fermentation , Lactococcus lactis/genetics , Plasmids/drug effects , Poland
8.
Med Sci Monit ; 21: 1587-97, 2015 May 31.
Article in English | MEDLINE | ID: mdl-26026273

ABSTRACT

BACKGROUND: Multiple sclerosis is a human autoimmunological disease that causes neurodegeneration. One of the potential ways to stop its development is induction of oral tolerance, whose effect lies in decreasing immune response to the fed antigen. It was shown in animal models that administration of specific epitopes of the three main myelin proteins - myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and proteolipid protein (PLP) - results in induction of oral tolerance and suppression of disease symptoms. Use of bacterial cells to produce and deliver antigens to gut mucosa seems to be an attractive method for oral tolerance induction in treatment of diseases with autoimmune background. MATERIAL AND METHODS: Synthetic genes of MOG35-55, MBP85-97, and PLP139-151 myelin epitopes were generated and cloned in Lactococcus lactis under a CcpA-regulated promoter. The tolerogenic effect of bacterial preparations was tested on experimental autoimmune encephalomyelitis, which is the animal model of MS. EAE was induced in rats by intradermal injection of guinea pig spinal cord homogenate into hind paws. RESULTS: Rats were administered preparations containing whole-cell lysates of L. lactis producing myelin antigens using different feeding schemes. Our study demonstrates that 20-fold, but not 4-fold, intragastric administration of autoantigen-expressing L. lactis cells under specific conditions reduces the clinical symptoms of EAE in rats. CONCLUSIONS: The present study evaluated the use of myelin antigens produced in L. lactis in inhibiting the onset of experimental autoimmune encephalomyelitis in rats. Obtained results indicate that application of such recombinant cells can be an attractive method of oral tolerance induction.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Immune Tolerance/immunology , Lactococcus lactis/genetics , Myelin Basic Protein/pharmacology , Myelin Proteolipid Protein/pharmacology , Myelin-Oligodendrocyte Glycoprotein/pharmacology , Peptide Fragments/pharmacology , Administration, Oral , Animals , Base Sequence , Cloning, Molecular , Immune Tolerance/drug effects , Lactococcus lactis/metabolism , Molecular Sequence Data , Myelin Basic Protein/administration & dosage , Myelin Basic Protein/genetics , Myelin Proteolipid Protein/administration & dosage , Myelin Proteolipid Protein/genetics , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/genetics , Oligonucleotides/genetics , Peptide Fragments/administration & dosage , Peptide Fragments/genetics , Rats , Sequence Analysis, DNA
9.
PLoS One ; 6(11): e26942, 2011.
Article in English | MEDLINE | ID: mdl-22073223

ABSTRACT

BACKGROUND: The single-stranded-nucleic acid binding (SSB) protein superfamily includes proteins encoded by different organisms from Bacteria and their phages to Eukaryotes. SSB proteins share common structural characteristics and have been suggested to descend from an ancestor polypeptide. However, as other proteins involved in DNA replication, bacterial SSB proteins are clearly different from those found in Archaea and Eukaryotes. It was proposed that the corresponding genes in the phage genomes were transferred from the bacterial hosts. Recently new SSB proteins encoded by the virulent lactococcal bacteriophages (Orf14(bIL67)-like proteins) have been identified and characterized structurally and biochemically. METHODOLOGY/PRINCIPAL FINDINGS: This study focused on the determination of phylogenetic relationships between Orf14(bIL67)-like proteins and other SSBs. We have performed a large scale phylogenetic analysis and pairwise sequence comparisons of SSB proteins from different phyla. The results show that, in remarkable contrast to other phage SSBs, the Orf14(bIL67)-like proteins form a distinct, self-contained and well supported phylogenetic group connected to the archaeal SSBs. Functional studies demonstrated that, despite the structural and amino acid sequence differences from bacterial SSBs, Orf14(bIL67) protein complements the conditional lethal ssb-1 mutation of Escherichia coli. CONCLUSIONS/SIGNIFICANCE: Here we identified for the first time a group of phages encoded SSBs which are clearly distinct from their bacterial counterparts. All methods supported the recognition of these phage proteins as a new family within the SSB superfamily. Our findings suggest that unlike other phages, the virulent lactococcal phages carry ssb genes that were not acquired from their hosts, but transferred from an archaeal genome. This represents a unique example of a horizontal gene transfer between Archaea and bacterial phages.


Subject(s)
Bacteriophages/metabolism , DNA, Single-Stranded/analysis , Genetic Complementation Test , Lactococcus/virology , Phylogeny , Cluster Analysis , DNA, Single-Stranded/genetics , Escherichia coli/genetics
10.
PLoS One ; 6(7): e22238, 2011.
Article in English | MEDLINE | ID: mdl-21789242

ABSTRACT

The extrachromosomal gene pool plays a significant role both in evolution and in the environmental adaptation of bacteria. The L. lactis subsp. lactis IL594 strain contains seven plasmids, named pIL1 to pIL7, and is the parental strain of the plasmid-free L. lactis IL1403, which is one of the best characterized lactococcal strains of LAB. Complete nucleotide sequences of pIL1 (6,382 bp), pIL2 (8,277 bp), pIL3 (19,244 bp), pIL4 (48,979), pIL5 (23,395), pIL6 (28,435 bp) and pIL7 (28,546) were established and deposited in the generally accessible database (GeneBank). Nine highly homologous repB-containing replicons, belonging to the lactococcal theta-type replicons, have been identified on the seven plasmids. Moreover, a putative region involved in conjugative plasmid mobilization was found on four plasmids, through identification of the presence of mob genes and/or oriT sequences. Detailed bioinformatic analysis of the plasmid nucleotide sequences provided new insight into the repertoire of plasmid-encoded functions in L. lactis, and indicated that plasmid genes from IL594 strain can be important for L. lactis adaptation to specific environmental conditions (e.g. genes coding for proteins involved in DNA repair or cold shock response) as well as for technological processes (e.g. genes encoding citrate and lactose utilization, oligopeptide transport, restriction-modification system). Moreover, global gene analysis indicated cooperation between plasmid- and chromosome-encoded metabolic pathways.


Subject(s)
Adaptation, Physiological/genetics , Lactococcus lactis/genetics , Plasmids/genetics , Bacterial Proteins , Base Sequence , Carbohydrate Metabolism , Carboxylic Acids/metabolism , Conjugation, Genetic , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , DNA Restriction-Modification Enzymes/genetics , Genes, Bacterial , Hydrogen-Ion Concentration , Lactococcus lactis/enzymology , Molecular Sequence Data , Physical Chromosome Mapping , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...