Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pak J Biol Sci ; 25(9): 867-874, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36098090

ABSTRACT

<b>Background and Objective:</b> Lemongrass (<i>Cymbopogon citratus</i>) and turmeric (<i>Curcuma longa</i>) are widely used by the community for traditional medicinal spices and cooking spices. In the era of the COVID-19 pandemic, people use lemongrass and turmeric to increase immunity and protect the body from infection with the SARS-CoV-2 virus. However, the antiviral mechanisms have not been studied much. This study aims to predict the bioactivity of the phytosterol compounds of lemongrass and turmeric for COVID-19 therapy through inhibition of 3C-like protease (3CLPro) <i>in silico</i>. <b>Materials and Methods:</b> The 3CLPro protein 3D structure was downloaded from the PDB database with the access code 2ZU2 and the phytosterol compounds of lemongrass and turmeric were taken from PubChem. A total of 59 total phytosterol compounds from turmeric and lemongrass were screened for their bioactivity as an antiviral by using online PASS. Compounds with a high activating potential (Pa) were interacted with 3CLPro protein with the PyRx program and analyzed by Discovery Studio version 19.0 and LigPlus. <b>Results:</b> A total of 22 total phytosterol compounds were identified as potential antiviral agents. Based on the Pa value, 15 phytosterol compounds have the potential to act as inhibitor agents for 3CLPro SARS-CoV-2. The phytosterol compounds of lemongrass and turmeric bind to the 3CLPro protein in the N-finger domain region and the A and B domain inhibitors connect residues of the 3CLPro protein. The phytosterols of lemongrass and turmeric show a low binding affinity with 3CLPro SARS-CoV-2, indicating a strong interaction between ligand and protein. The inhibition of phytosterols against 3CLPro protein can be used as a basis for determining candidates for COVID-19 therapeutic agents. <b>Conclusion:</b> The phytosterol compounds contained in lemongrass and turmeric have the potential to act as 3CLPro inhibitors. Further studies both <i>in vitro</i> and <i>in vivo</i> need to be done to prove the inhibitory potential of phytosterol compounds.


Subject(s)
COVID-19 Drug Treatment , Cymbopogon , Phytosterols , Antiviral Agents/pharmacology , Curcuma , Humans , Pandemics , Peptide Hydrolases , Phytosterols/pharmacology , SARS-CoV-2 , Viral Proteins/chemistry , Viral Proteins/metabolism
2.
Acta Inform Med ; 26(2): 87-92, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30061777

ABSTRACT

INTRODUCTION: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance. Insulin resistance leads to hyperglycaemia that causes complication such as microangiopathy and macroangiopathy. The immune system of T2DM will be produce IL-10 as an anti-inflammatory cytokine role immune-stimulator and immunosuppressant in the organ system. This present study investigated of IL-10 gene profile and protein expression in the rat organ (Rattus norvegicus) strain Wistar model T2DM. MATERIAL AND METHODS: This research was used three of male rats group T2DM and three of male of normal rat as a control. The DNA tissues were isolated, amplified and sequenced by using IL-10 gene primer. The IL-10 protein profile and expression of rat tissues was analyzed using Experion-Pro260 gel and dot blotting using IL-10 antibody. RESULTS: This study showed the differential expression of IL-10 gene profile among tissues among normal and T2DM groups. The IL-10 gene sequences, we found eight mutations in brain and twenty-seven mutations on gastric of T2DM group compare with control group, meanwhile there are no mutation in other tissues of both groups. The protein profile of all tissues in both groups was completely diverse as proper. Moreover, the level expression of IL-10 of heart, lung, gastric and kidney of T2DM group was lower than other tissues of both groups. CONCLUSION: This study concludes that T2DM animal model triggering mutation of IL-10 gene sequences of brain and gastric and induced the increasing level expression of IL-10 of ileum, brain and liver.

SELECTION OF CITATIONS
SEARCH DETAIL
...