Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(18): 22310-22319, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37099614

ABSTRACT

Interfaces between photoactive perovskite layer and selective contacts play a key role in the performance of perovskite solar cells (PSCs). The properties of the interface can be modified by the introduction of molecular interlayers between the halide perovskite and the transporting layers. Herein, two novel structurally related molecules, 1,3,5-tris(α-carbolin-6-yl)benzene (TACB) and the hexamethylated derivative of truxenotris(7-azaindole) (TTAI), are reported. Both molecules have the ability to self-assemble through reciprocal hydrogen bond interactions, but they have different degrees of conformational freedom. The benefits of combining these tripodal 2D-self-assembled small molecular materials with well-known hole transporting layers (HTLs), such as PEDOT:PSS and PTAA, in PSCs with inverted configuration are described. The use of these molecules, particularly the more rigid TTAI, enhanced the charge extraction efficiency and reduced the charge recombination. Consequently, an improved photovoltaic performance was achieved in comparison to the devices fabricated with the standard HTLs.

2.
RSC Adv ; 12(50): 32630-32639, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36425685

ABSTRACT

Up-to-date studies propose that strain in halide perovskites is one of the key factors that determine a device's efficiency and stability. Here, we show a systematic approach to characterize the phenomenon in the standard methylammonium lead iodine (MAPbI3) perovskite system by: (i) the substitution of some MA by guanidinium (Gu); (ii) the incorporation of PbS quantum dot (QD) additives and (iii) addition of both Gu and PbS at the same time. We studied the effect of these incorporations on the film strain and crystal cell unit volume, and on the solar cell device efficiency and stability. Gu cations and PbS QDs affect the strain, the former due to the relatively large dimensions of Gu, and the latter due to the lattice matching parameters. With the control of Gu and PbS QD content, higher performance and longer solar cell stability are obtained. We demonstrated that the presence of Gu and PbS QDs alters the structure of perovskite, in terms of modification of the unit cell volume and strain. The greater size of Gu cations produces a MAPbI3 unit cell volume expansion as Gu is incorporated, modifying the strain from compressive to tensile. PbS QDs aid Gu incorporation, producing a unit cell volume expansion. In the case of 15% mol Gu incorporation, the addition of PbS QDs modifies strain from compressive to tensile, limiting the deleterious effect. At the same time the unit cell volume is less affected, increasing the solar cell stability. Our work shows that the control of compressive strain and the unit cell volume expansion lead to a 50% increase in T 80, the time in which the PCE decreases to 80% of its original value, increasing the T 80 value from 120 to 187 days under air conditions. Moreover it highlights the importance of exploiting not only the control of the strain induced by internal component, the cation, but also the strain induced by the external component, the QD, associated instead with critical volume variation of metastable perovskite unit cell volume.

3.
Joule ; 6(4): 861-883, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35711469

ABSTRACT

Despite the promising properties of tin-based halide perovskites, one clear limitation is the fast Sn+2 oxidation. Consequently, the preparation of long-lasting devices remains challenging. Here, we report a chemical engineering approach, based on adding Dipropylammonium iodide (DipI) together with a well-known reducing agent, sodium borohydride (NaBH4), aimed at preventing the premature degradation of Sn-HPs. This strategy allows for obtaining efficiencies (PCE) above 10% with enhanced stability. The initial PCE remained unchanged upon 5 h in air (60% RH) at maximum-power-point (MPP). Remarkably, 96% of the initial PCE was kept after 1,300 h at MPP in N2. To the best of our knowledge, these are the highest reported values for Sn-based solar cells. Our findings demonstrate a beneficial synergistic effect when additives are incorporated, highlight the important role of iodide in the performance upon light soaking, and, ultimately, unveil the relevance of controlling the halide chemistry for future improvement of Sn-based perovskite devices.

4.
ACS Energy Lett ; 6(10): 3511-3521, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34660905

ABSTRACT

Due to the high industrial interest for perovskite-based photovoltaic devices, there is an urgent need to fabricate them under ambient atmosphere, not limited to low relative humidity (RH) conditions. The formamidinium lead iodide (FAPI) perovskite α-black phase is not stable at room temperature and is challenging to stabilize in an ambient environment. In this work, we show that pure FAPI perovskite solar cells (PSCs) have a dramatic increase of device long-term stability when prepared under ambient air compared to FAPI PSCs made under nitrogen, both fabricated with N-methylpyrrolidone (NMP). The T 80 parameter, the time in which the efficiency drops to 80% of the initial value, increases from 21 (in N2) to 112 days (in ambient) to 145 days if PbS quantum dots (QDs) are introduced as additives in air-prepared FAPI PSCs. Furthermore, by adding methylammonium chloride (MACl) the power conversion efficiency (PCE) reaches 19.4% and devices maintain 100% of the original performance for at least 53 days. The presence of Pb-O bonds only in the FAPI films prepared in ambient conditions blocks the propagation of α- to δ-FAPI phase conversion. Thus, these results open the way to a new strategy for the stabilization in ambient air toward perovskite solar cells commercialization.

5.
ACS Appl Nano Mater ; 4(6): 6170-6177, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-35698624

ABSTRACT

An outstanding potentiality of layered two-dimensional (2D) organic-inorganic hybrid perovskites (2DHPs) is in the development of solar cells, photodetectors, and light-emitting diodes. In 2DHPs, an exciton is localized in an atomically thin lead(II) halide inorganic layer of sub-nanometer thickness as in a quantum well sandwiched between organic layers as energetic and dielectric barriers. In previous years, versatile optical characterization of 2DHPs has been carried out mainly for thin flakes of single crystals and ultrathin (of the order of 20 nm) polycrystalline films, whereas there is a lack of optical characterization of thick (hundreds of nanometers) polycrystalline films, fundamentals for fabrication of devices. Here, with the use of photoluminescence (PL) and absorption spectroscopies, we studied the exciton behavior in ∼200 nm polycrystalline thin films of 2D perovskite (PEA)2PbI4, where PEA is phenethylammonium. Contrary to the case of ultrathin films, we have found that peak energies and line width of the excitonic bands in our films demonstrate unusual extremely weak sensitivity to temperature in 20-300 K diapason. The excitonic PL band is characterized by a significant (∼30 meV) Stokes shift with respect to the corresponding absorption band as well as by a full absence of the exciton fine structure at cryogenic temperatures. We suggest that the observed effects are due to the large inhomogeneous broadening of the excitonic PL and absorption bands resulting from the (PEA)2PbI4 band gap energy dependence on the number of lead(II) halide layers of individual crystallites. The characteristic time of the exciton energy funneling from higher- to lower-energy crystallites within (PEA)2PbI4 polycrystalline thin films is about 100 ps.

6.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365967

ABSTRACT

Inorganic hole-transporting materials (HTMs) for stable and cheap inverted perovskite-based solar cells are highly desired. In this context, NiOx, with low synthesis temperature, has been employed. However, the low conductivity and the large number of defects limit the boost of the efficiency. An approach to improve the conductivity is metal doping. In this work, we have synthesized cobalt-doped NiOx nanoparticles containing 0.75, 1, 1.25, 2.5, and 5 mol% cobalt (Co) ions to be used for the inverted planar perovskite solar cells. The best efficiency of the devices utilizing the low temperature-deposited Co-doped NiOx HTM obtained a champion photoconversion efficiency of 16.42%, with 0.75 mol% of doping. Interestingly, we demonstrated that the improvement is not from an increase of the conductivity of the NiOx film, but due to the improvement of the perovskite layer morphology. We observe that the Co-doping raises the interfacial recombination of the device but more importantly improves the perovskite morphology, enlarging grain size and reducing the density of bulk defects and the bulk recombination. In the case of 0.75 mol% of doping, the beneficial effects do not just compensate for the deleterious one but increase performance further. Therefore, 0.75 mol% Co doping results in a significant improvement in the performance of NiOx-based inverted planar perovskite solar cells, and represents a good compromise to synthesize, and deposit, the inorganic material at low temperature, without losing the performance, due to the strong impact on the structural properties of the perovskite. This work highlights the importance of the interface from two different points of view, electrical and structural, recognizing the role of a low doping Co concentration, as a key to improve the inverted perovskite-based solar cells' performance.

7.
ACS Energy Lett ; 4(1): 54-62, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30662954

ABSTRACT

Mixed halide perovskites are one of the promising candidates in developing solar cells and light-emitting diodes (LEDs), among other applications, because of their tunable optical properties. Nonetheless, photoinduced phase segregation, by formation of segregated Br-rich and I-rich domains, limits the overall applicability. We tracked the phase segregation with increasing crystalline size of CsPbBr3-x I x and their photoluminescence under continuous-wave laser irradiation (405 nm, 10 mW cm-2) and observed the occurrence of the phase segregation from the threshold size of 46 ± 7 nm. These results have an outstanding agreement with the diffusion length (45.8 nm) calculated also experimentally from the emission lifetime and segregation rates. Furthermore, through Kelvin probe force microscopy, we confirmed the correlation between the phase segregation and the reversible halide ion migration among grain centers and boundaries. These results open a way to achieve segregation-free mixed halide perovskites and improve their performances in optoelectronic devices.

8.
Phys Chem Chem Phys ; 20(48): 30189-30199, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30489581

ABSTRACT

The employment of bulky aliphatic cations in the manufacture of moisture-stable materials has triggered the development and application of 2D/3D perovskites as sensitizers in moisture-stable solar cells. Although it is true that the moisture stability increases, it is also true that the photovoltaic performance of 2D/3D PVK materials is severely limited owing to quantum and dielectric confinement effects. Accordingly, it is necessary the synthesis and deep optical characterization of materials with an adequate management of dielectric contrast between the layers. Here, we demonstrate the successful tuning of dielectric confinement by the inclusion of a conjugated molecule, as a bulky cation, in the fabrication of the 2D/3D PVK material (C6H5NH3)2(CH3NH3)n-1PbnI3n+1, where n = 3 or 5. The absence of excitonic states related to n ≥ 1 at room temperature, as well as the very low concentration of excitons after 1 ps of excitation of samples in which n ≥ 3, provide strong evidence of an excellent ability to dissociate excitons into free charge carriers. As consequence films with low n, presenting higher stability than standard 3D perovskites, improved significantly their performance, showing one of the highest short circuit current density (Jsc ≈ 13.8) obtained to date for perovskite materials within the 2D limit (n < 10).

9.
Phys Chem Chem Phys ; 19(17): 10913-10921, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28401223

ABSTRACT

Halide perovskite derivatives present unprecedented physical phenomena among those materials which are suitable for photovoltaics, such as a fast ion diffusion coefficient. In this paper it is reported how the benefits of this property can be used during the growth of halide perovskites in order to control the morphological and optoelectronic properties of the final thin film. Using a large enough halide reservoir, the nature of the halides present in the final perovskite layer can be exchanged and this depends on the initial salt used in the two-step deposition method. In particular, the preparation of a methylammonium lead bromide (MAPbBr3) thin film is reported, using a two-step method based on the transformation of lead(ii) iodide (PbI2), lead(ii) bromide (PbBr2) and lead(ii) chloride (PbCl2) salts into MAPbBr3 perovskite after dipping in a methylammonium bromide (MABr) solution. The films prepared from different salts present different properties in terms of morphology and optoelectronic properties, thus providing significantly different performance when they are used for the preparation of photovoltaic devices. Interestingly, the use of PbI2 and PbCl2 salts reduce the charge recombination and increase the open circuit potential obtained, especially in the former case. However, the highest photocurrent is obtained when PbBr2 is used. For PbI2 and PbCl2 salts no traces of the former salt are observed in the MAPbBr3 layer obtained after 10 minutes of dipping time, however, the presence of PbBr2 has still been detected (using X-ray diffraction) when this salt has been employed.

10.
ACS Appl Mater Interfaces ; 9(15): 13181-13187, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28351131

ABSTRACT

The photoconversion efficiency of perovskite solar cells (PSCs) is enhanced by the deposition of inorganic nanoparticles (NPs) at the interface between the compact TiO2 electron-selective contact and the mesoporous TiO2 film. The NPs used are core/shell Au@SiO2, where a thin SiO2 coating protects the Au core from the direct chemical interaction with CH3NH3PbI3 halide perovskite used as light-harvesting material. The samples prepared with Au@SiO2 NPs exhibit a higher external quantum efficiency in the complete wavelength range at which perovskite presents light absorption and not just at the wavelengths at which Au@SiO2 NPs present their absorption peak. This fact rules out a direct plasmonic process as responsible for the enhancement of cell performance. A detailed characterization by photoluminescence, impedance spectroscopy, and open-circuit voltage decay unveils a modification of the interfacial properties with an augmentation of the interfacial electrostatic potential that increases both photovoltage and photocurrent. This article highlights the dramatic role of interfaces in the performance of PSCs. The use of reduced quantities of highly stable inorganic compounds to modify the PSC interface instead of the extensively used organic compounds opens the door to a new surface engineering based on inorganic compounds.

11.
ChemSusChem ; 9(18): 2679-2685, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27553898

ABSTRACT

The solution processing of pinhole-free methylammonium lead triiodide perovskite-C70 fullerene (MAPbI3 :C70 ) blend films on fluorine-doped tin oxide (FTO)-coated glass substrates is presented. Based on this approach, a simplified and robust protocol for the preparation of efficient electron-transport layer (ETL)-free perovskite solar cells is described. Power conversion efficiency (PCE) of 13.6 % under AM 1.5 G simulated sunlight is demonstrated for these devices. Comparative impedance spectroscopy and photostability analysis of the MAPbI3 :C70 and single MAPbI3 films compared with conventional compact TiO2 ETL-based devices are shown. The beneficial impact of using MAPbI3 :C70 blend films is emphasized.


Subject(s)
Calcium Compounds/chemistry , Electric Power Supplies , Fullerenes/chemistry , Oxides/chemistry , Solar Energy , Titanium/chemistry , Drug Stability , Electron Transport , Fluorine/chemistry , Glass/chemistry , Methylamines/chemistry , Solvents/chemistry , Tin Compounds/chemistry
12.
Matronas prof ; 17(4): 143-148, 2016. tab, graf
Article in Spanish | IBECS | ID: ibc-158860

ABSTRACT

OBJETIVO: Evaluar la efectividad de la administración de procaína subdérmica en bajas dosis en la cicatriz del parto vaginal o por cesárea para el alivio del dolor persistente posparto. Pacientes, material y métodos: Estudio observacional y prospectivo de abril de 2014 a marzo de 2016, en mujeres con dolor persistente después de 10 días posparto. Se valoraron: variables demográficas, variables clínicas y obstétricas, motivo de consulta, grado del dolor según la escala visual analógica (EVA), y número de dosis de tratamiento recibidas y coste por dosis. El tratamiento utilizado fue la inyección subdérmica con procaína (1 mg/kg) en sesiones quincenales, hasta conseguir un dolor ≤1 según la EVA. RESULTADOS: Se estudiaron 168 mujeres. La media de dolor antes del tratamiento fue de 5,52 en la escala EVA y de 0,17 al final, con una p <0,001. La edad mostró diferencias significativas interpacientes con una p <0,001, donde las pacientes mayores de 40 años tuvieron una valoración inicial del dolor más alta y por tanto necesitaron más sesiones, aunque también consiguieron un grado de dolor ≤1. El 80,9% de las pacientes terminaron el tratamiento a los 30 días con la tercera sesión. CONCLUSIÓN: La aplicación de procaína subdérmica está asociada a la disminución del dolor persistente posparto


OBJECTIVE: To evaluate effectiveness of low doses of subdermal procaine administered into vaginal labor and C-section scars to alleviate persistent postpartum pain. Subjects, materials and methodology: Observational and prospective study carried out from April 2014 to March 2016 in I 71 women suffering from persistent pain after 10 days of postpartum. Variables taken into account: demographics, clinical and obstetric differences, pain level according to the Visual Analogue Scale (VAS), amount of doses of treatment, and cost per dose. The treatment used was one subdermal injection of procaine ( I mg/kg) every two weeks until achieving a pain level of s I according to the VAS. RESULTS: 168 women were studied. The average pain level before treatment was 5.52 according to the VAS, and 0.17 after treatment (p < 0.00 I ). Age was one of the most significant differences among patients with a p < 0.001. Patients over 40 assessed their initial pain at a higher level and therefore needed more doses. However, they also achieved a pain level of ≤ 1.80.9% of patients finished their treatment after 30 days with their third dose. CONCLUSION: Applying subdermal procaine has shown to be effective in treating persistent postpartum pain


Subject(s)
Humans , Female , Pain, Postoperative/drug therapy , Pelvic Pain/drug therapy , Pain Management/methods , Procaine/therapeutic use , Postpartum Period , Infusions, Subcutaneous , Wound Healing , Neural Pathways , Puerperal Disorders/drug therapy
13.
Nano Lett ; 14(2): 888-93, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24397375

ABSTRACT

Organometal halide perovskite-based solar cells have recently realized large conversion efficiency over 15% showing great promise for a new large scale cost-competitive photovoltaic technology. Using impedance spectroscopy measurements we are able to separate the physical parameters of carrier transport and recombination in working devices of the two principal morphologies and compositions of perovskite solar cells, viz. compact thin films of CH3NH3PbI(3-x)Clx and CH3NH3PbI3 infiltrated on nanostructured TiO2. The results show nearly identical spectral characteristics indicating a unique photovoltaic operating mechanism that provides long diffusion lengths (1 µm). Carrier conductivity in both devices is closely matched, so that the most significant differences in performance are attributed to recombination rates. These results highlight the central role of the CH3NH3PbX3 semiconductor absorber in carrier collection and provide a new tool for improved optimization of perovskite solar cells. We report for the first time a measurement of the diffusion length in a nanostructured perovskite solar cell.

14.
Nano Lett ; 14(2): 724-30, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24341922

ABSTRACT

The highest efficiencies in solution-processable perovskite-based solar cells have been achieved using an electron collection layer that requires sintering at 500 °C. This is unfavorable for low-cost production, applications on plastic substrates, and multijunction device architectures. Here we report a low-cost, solution-based deposition procedure utilizing nanocomposites of graphene and TiO2 nanoparticles as the electron collection layers in meso-superstructured perovskite solar cells. The graphene nanoflakes provide superior charge-collection in the nanocomposites, enabling the entire device to be fabricated at temperatures no higher than 150 °C. These solar cells show remarkable photovoltaic performance with a power conversion efficiency up to 15.6%. This work demonstrates that graphene/metal oxide nanocomposites have the potential to contribute significantly toward the development of low-cost solar cells.

15.
Langmuir ; 29(28): 8773-81, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23758131

ABSTRACT

Different classes of chromophores have been developed for the dye solar cell (DSC), including as the two main classes organometallic dyes, with Ru-based complexes and Zn-porphyrin complexes, and metal-free dyes. They result in different recombination behavior by electron transfer at the titania/dye/electrolyte interface, where the dye molecule plays a pivotal role. We present an overview of the main factors that control recombination depending on dye structural and electronic properties: the substituent's nature, the size and nature of the π bridge, the type of absorption onto the titania surface, and the structure of the donor electron moiety or anchoring group. Different recombination mechanisms arise, including direct recombination to redox electrolytes and through a dye cation intermediate.

16.
J Phys Chem Lett ; 4(1): 141-6, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-26291226

ABSTRACT

Hydrogen generation by using quantum dot (QD) based heterostructures has emerged as a promising strategy to develop artificial photosynthesis devices. In the present study, we sensitize mesoporous TiO2 electrodes with in-situ-deposited PbS/CdS QDs, aiming at harvesting light in both the visible and the near-infrared for hydrogen generation. This heterostructure exhibits a remarkable photocurrent of 6 mA·cm(-2), leading to 60 mL·cm(-2)·day(-1) hydrogen generation. Most importantly, confirmation of the contribution of infrared photons to H2 generation was provided by the incident-photon-to-current-efficiency (IPCE), and the integrated current was in excellent agreement with that obtained through cyclic voltammetry. The main electronic processes (accumulation, transport, and recombination) were identified by impedance spectroscopy, which appears as a simple and reliable methodology to evaluate the limiting factors of these photoelectrodes. On the basis of this TiO2/PbS/CdS heterostructrure, a "quasi-artificial leaf" has been developed, which has proven to produce hydrogen under simulated solar illumination at (4.30 ± 0.25) mL·cm(-2)·day(-1).

17.
J Phys Chem Lett ; 3(12): 1629-34, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-26285719

ABSTRACT

Changes in the composition of the electrolyte are known to affect the parameters that determine the performance of dye solar cells. This paper describes a robust method for the analysis of the photovoltage in dye solar cells. The method focuses on the study of recombination resistance and chemical capacitance of TiO2 obtained from impedance spectroscopy. Four dye solar cells with electrolytes producing known effects on photovoltage behavior have been studied. Effects of conduction band shifts and changes in recombination rate in the photovoltage have been evaluated quantitatively.

18.
Chemphyschem ; 12(5): 961-5, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21381177

ABSTRACT

Porphyrins are promising sensitizers for dye solar cells (DSCs) but narrow absorption bands at 400-450 and 500-650 nm limit their light-harvesting properties. Increasing elongation of the π-conjugation and loss of symmetry causes broadening and a red-shift of the absorption bands, which considerably improves the performance of the DSC. Herein we use an oligothienylenevinylene to bridge a Zn-porphyrin system and the anchoring group of the sensitizer. We separately study the performance of the two basic units: oligothienylenevinylene and Zn-porphyrin. The combined system provides a three-fold enhancement of the photocurrent with respect to parent dyes. This is caused by an additional strong absorption in the region 400-650 nm that leads to flat IPCE of 60%. Theoretical calculations support that the addition of the oligothienylenevinylene unit as a linking bridge creates a charge transfer band that transforms a Zn-porphyrin dye into a push-pull type system with highly efficient charge injection properties.

19.
J Am Chem Soc ; 132(19): 6834-9, 2010 May 19.
Article in English | MEDLINE | ID: mdl-20423152

ABSTRACT

Semiconductor Quantum Dots (QDs) currently receive widespread attention for the development of photovoltaic devices due to the possibility of tailoring their optoelectronic properties by the control of size and composition. Here we show that it is possible to design both injection and recombination in QD sensitized solar cells (QDSCs) by the appropriate use of molecular dipoles and conformal coatings. QDSCs have been manufactured using mesoporous TiO(2) electrodes coated with "in situ" grown CdSe semiconductor nanocrystals by chemical bath deposition (CBD). Surface modification of the CdSe sensitized electrodes by conformal ZnS coating and grafting of molecular dipoles (DT) has been explored to both increase the injection from QDs into the TiO(2) matrix and reduce the recombination of the QD sensitized electrodes. Different sequences of both treatments have been tested aiming at boosting the energy conversion efficiency of the devices. The obtained results showed that the most favorable sequence of the surface treatment (DT+ZnS) led to a dramatic 600% increase of photovoltaic performance compared to the reference electrode (without modification): V(oc) = 0.488 V, j(sc) = 9.74 mA/cm(2), FF = 0.34, and efficiency = 1.60% under full 1 sun illumination. The measured photovoltaic performance was correlated to the relative position of the CdSe conduction band (characterized by surface photovoltage measurements) and TiO(2) conduction band (characterized by the chemical capacitance, C(mu)) together with recombination resistance, R(rec).

20.
J Am Chem Soc ; 130(34): 11312-6, 2008 Aug 27.
Article in English | MEDLINE | ID: mdl-18671396

ABSTRACT

The paper describes the electronic charging and conducting properties of vertically oriented TiO 2 nanotube arrays formed by anodization of Ti foil samples. The resulting films, composed of vertically oriented nanotubes approximately 10 mum long, wall thickness 22 nm, and pore diameter 56 nm, are analyzed using impedance spectroscopy and cyclic voltammetry. Depending on the electrochemical conditions two rather different electronic behaviors are observed. Nanotube array samples in basic medium show behavior analogous to that of nanoparticulate TiO 2 films used in dye-sensitized solar cells: a chemical capacitance and electronic conductivity that increase exponentially with bias potential indicating a displacement of the Fermi level. Nanotube array samples in acidic medium, or samples in a basic medium submitted to a strong negative bias, exhibit a large increase in capacitance and conductivity indicating Fermi level pinning. The contrasting behaviors are ascribed to proton intercalation of the TiO 2. Our results suggest a route for controlling the electronic properties of the ordered metal-oxide nanostructures for their use in applications including supercapacitors, dye-sensitized solar cells, and gas sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...