Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 108(4): 749-756, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33743206

ABSTRACT

The DNA damage-binding protein 1 (DDB1) is part of the CUL4-DDB1 ubiquitin E3 ligase complex (CRL4), which is essential for DNA repair, chromatin remodeling, DNA replication, and signal transduction. Loss-of-function variants in genes encoding the complex components CUL4 and PHIP have been reported to cause syndromic intellectual disability with hypotonia and obesity, but no phenotype has been reported in association with DDB1 variants. Here, we report eight unrelated individuals, identified through Matchmaker Exchange, with de novo monoallelic variants in DDB1, including one recurrent variant in four individuals. The affected individuals have a consistent phenotype of hypotonia, mild to moderate intellectual disability, and similar facies, including horizontal or slightly bowed eyebrows, deep-set eyes, full cheeks, a short nose, and large, fleshy and forward-facing earlobes, demonstrated in the composite face generated from the cohort. Digital anomalies, including brachydactyly and syndactyly, were common. Three older individuals have obesity. We show that cells derived from affected individuals have altered DDB1 function resulting in abnormal DNA damage signatures and histone methylation following UV-induced DNA damage. Overall, our study adds to the growing family of neurodevelopmental phenotypes mediated by disruption of the CRL4 ubiquitin ligase pathway and begins to delineate the phenotypic and molecular effects of DDB1 misregulation.


Subject(s)
Alleles , DNA Repair/genetics , DNA-Binding Proteins/genetics , Mutation , Neurodevelopmental Disorders/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Male , Phenotype , Syndrome
2.
JIMD Rep ; 52(1): 3-10, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32154053

ABSTRACT

CBS deficient individuals undergoing betaine supplementation without sufficient dietary methionine restriction can develop severe hypermethioninemia and brain edema. Brain edema has also been observed in individuals with severe hypermethioninemia without concomitant betaine supplementation. We systematically evaluated reports from 11 published and 4 unpublished patients with CBS deficiency and from additional four cases of encephalopathy in association with elevated methionine. We conclude that, while betaine supplementation does greatly exacerbate methionine accumulation, the primary agent causing brain edema is methionine rather than betaine. Clinical signs of increased intracranial pressure have not been seen in patients with plasma methionine levels below 559 µmol/L but occurred in one patient whose levels did not knowingly exceed 972 µmol/L at the time of manifestation. While levels below 500 µmol/L can be deemed safe it appears that brain edema can develop with plasma methionine levels close to 1000 µmol/L. Patients with CBS deficiency on betaine supplementation need to be regularly monitored for concordance with their dietary plan and for plasma methionine concentrations. Recurrent methionine levels above 500 µmol/L should alert clinicians to check for clinical signs and symptoms of brain edema and review dietary methionine intake. Levels approaching 1000 µmol/L do increase the risk of complications and levels exceeding 1000 µmol/L, despite best dietetic efforts, should be acutely addressed by reducing the prescribed betaine dose.

3.
Proc Natl Acad Sci U S A ; 117(6): 3053-3062, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31980526

ABSTRACT

Genome sequencing has established clinical utility for rare disease diagnosis. While increasing numbers of individuals have undergone elective genome sequencing, a comprehensive study surveying genome-wide disease-associated genes in adults with deep phenotyping has not been reported. Here we report the results of a 3-y precision medicine study with a goal to integrate whole-genome sequencing with deep phenotyping. A cohort of 1,190 adult participants (402 female [33.8%]; mean age, 54 y [range 20 to 89+]; 70.6% European) had whole-genome sequencing, and were deeply phenotyped using metabolomics, advanced imaging, and clinical laboratory tests in addition to family/medical history. Of 1,190 adults, 206 (17.3%) had at least 1 genetic variant with pathogenic (P) or likely pathogenic (LP) assessment that suggests a predisposition of genetic risk. A multidisciplinary clinical team reviewed all reportable findings for the assessment of genotype and phenotype associations, and 137 (11.5%) had genotype and phenotype associations. A high percentage of genotype and phenotype associations (>75%) was observed for dyslipidemia (n = 24), cardiomyopathy, arrhythmia, and other cardiac diseases (n = 42), and diabetes and endocrine diseases (n = 17). A lack of genotype and phenotype associations, a potential burden for patient care, was observed in 69 (5.8%) individuals with P/LP variants. Genomics and metabolomics associations identified 61 (5.1%) heterozygotes with phenotype manifestations affecting serum metabolite levels in amino acid, lipid and cofactor, and vitamin pathways. Our descriptive analysis provides results on the integration of whole-genome sequencing and deep phenotyping for clinical assessments in adults.


Subject(s)
Diagnostic Imaging , Metabolomics , Precision Medicine/methods , Whole Genome Sequencing , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Genetic Predisposition to Disease/genetics , Genotype , Heart Diseases/genetics , Humans , Male , Middle Aged , Phenotype , Young Adult
4.
Article in English | MEDLINE | ID: mdl-28550066

ABSTRACT

Niemann-Pick type C disease (NPC; OMIM #257220) is an inborn error of intracellular cholesterol trafficking. It is an autosomal recessive disorder caused predominantly by mutations in NPC1 Although characterized as a progressive neurological disorder, it can also cause cholestasis and liver dysfunction because of intrahepatocyte lipid accumulation. We report a 7-wk-old infant who was admitted with neonatal cholestasis, and who was diagnosed with a novel homozygous stop-gain variant in NPC1 by rapid whole-genome sequencing (WGS). WGS results were obtained 16 d before return of the standard clinical genetic test results and prompted initiation of targeted therapy.


Subject(s)
Carrier Proteins/genetics , Membrane Glycoproteins/genetics , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/genetics , Carrier Proteins/metabolism , Cholestasis/complications , Cholestasis/genetics , Cholesterol/genetics , Cholesterol/metabolism , Genome/genetics , Homozygote , Humans , Infant , Intracellular Signaling Peptides and Proteins , Liver Diseases/complications , Male , Membrane Glycoproteins/metabolism , Mutation , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/complications , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Diseases/complications , Niemann-Pick Diseases/genetics , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...