Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473559

ABSTRACT

The study refers to the application of numerical modeling for the improvement of the currently realized precision forging technology performed on a hammer to produce connecting rod forgings in a triple system through the development of an additional rolling pass to be used before the roughing operation as well as preparation of the charge to be held by the robot's grippers in order to implement future process robotization. The studies included an analysis of the present forging technology together with the dimension-shape requirements for the forgings, which constituted the basis for the construction and development of a thermo-mechanical numerical model as well as the design of the tool construction with the consideration of the additional rolling pass with the use of the calculation package Forge 3.0 NxT. The following stage of research was the realization of multi-variant numerical simulations of the newly developed forging process with the consideration of robotization, as a result of which the following were obtained: proper filling of the tool impressions (including the roller's impression) by the deformed material, the temperature distributions for the forging and the tools as well as plastic deformations (considering the thermally activated phenomena), changes in the grain size as well as the forging force and energy courses. The obtained results were verified under industrial conditions and correlated with respect to the forgings obtained in the technology applied so far. The achieved results of technological tests confirmed that the changes introduced into the tool construction and the preform geometry reduced the diameter, and thus also the volume, of the charge as well as provided a possibility of implementing robotization and automatization of the forging process in the future. The obtained results showed that the introduction of an additional rolling blank resulted in a reduction in forging forces and energy by 30% while reducing the hammer blow by one. Attempts to implement robotization into the process were successful and did not adversely affect the geometry or quality of forgings, increasing production efficiency.

2.
Materials (Basel) ; 16(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36903220

ABSTRACT

This study examines the possibilities of applying numerical and physical modeling to the elaboration of technology and design of tools used in the hot forging of needle rails for railroad turnouts. First, a numerical model of a three-stage process for forging a needle from lead was built in order to develop a proper geometry of the tools' working impressions for physical modeling. Based on preliminary results of the force parameters, a decision was made to verify the numerical modeling at 1:4 scale due to forging force values as well as agreement of the numerical and physical modeling results, which was confirmed by the similar courses of forging forces and a comparison of the 3D scan image of the forged lead rail with the CAD model obtained from FEM. The final stage of our research was modeling an industrial forging process in order to determine the preliminary assumptions of this newly developed method of precision forging using a hydraulic press as well as preparing tools to reforge a needle rail from the target material, i.e., 350HT steel with a 60E1A6 profile to the 60E1 profile used in railroad turnouts.

3.
Materials (Basel) ; 14(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467045

ABSTRACT

This paper aims to evaluate the effect of pre-coating of forged parts on decarburization in the die forging process. The studies consisted of three stages. In the first instance, different coatings were tested under laboratory conditions by heating steel samples to the temperature of 1200 °C for over five minutes to model the preheating conditions of the induction. Next, testing continued in a commercial forging stand where we tested the effects of different coatings on the rods decarburization during the induction heating process, usually performed before forging. Once completed testing, the measurements and observations of the decarbonized layer were made. The third stage involved analysis of the decarburization of the forged parts after forging. The forged parts were made using precoating of pre-forging elements; pieces cut off a metal rod. Based on tests results, the possibility of using this solution in the technique of industrial hot forging was evaluated. The results of laboratory tests have confirmed that lubrication of metal pieces is sufficient, as well as proved it to be effective in reducing decarburization of the surface layer. Research works conducted in an induction heater showed differences in decarburization depending on a substance and concentration of lubricants that were used. These differences become more apparent when observing the surface layer of the forged parts. Results indicate that decarburization may be reduced to a minimum when we use Bonderite product in a concentration of 66% and 50%. Another lubricant, Berulit 913, may also be used. However, due to burning graphite in high temperatures, reduction of decarburization goes only as far as half of the thickness of the decarbonized layer. Condursal has no significant effect; nevertheless, it protects over the induction heating stage.

4.
Materials (Basel) ; 13(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471069

ABSTRACT

The global production of die forgings is an important branch of the motor industry for obvious reasons, resulting from the very good mechanical properties of the forged products. The expectations of the recipients, beside the implementation of the forging process, include also a range of supplementary procedures, such as finishing treatment including shot blasting, thermal treatment, and machining, in order to ensure the proper quality of the provided semi-product or the ready detail for the assembly line. Especially important in the aspect of the operational properties of the products is the thermal treatment of the forgings, which can be implemented in many variants, depending on the expected results. Unfortunately, a treatment of this type, realized separately after the forging process, is very time and energy-consuming; additionally, it significantly raises the production costs due to the increased energy consumption resulting from the necessity of repeated heating of the forgings for such thermal treatment. The article reviews the most frequently applied (separately, after the forging process) thermal treatments for die forgings together with the devices/lines assigned for them, as well as presents an alternative (thermoplastic) method of forging production with the use of the forging heat. The paper also presents a prototype semi-industrial controlled cooling line developed by the authors, which allows the development of the assumed heat treatment of forgings directly after forging with the use of forging heat, together with sample results of conducted tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...