Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res ; 44: 89, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24088531

ABSTRACT

Heme oxygenase-1 (HO-1) is an enzyme that catabolizes free heme, which induces an intense inflammatory response. The expression of HO-1 is induced by different stimuli, triggering an anti-inflammatory response during biological stress. It was previously verified that HO-1 is able to induce indoleamine 2,3-dioxygenase (IDO), an enzyme that is induced by IFN-γ in Toxoplasma gondii infection. To verify the role of HO-1 during in vivo T. gondii infection, BALB/c and C57BL/6 mice were infected with the ME49 strain and treated with zinc protoporphyrin IX (ZnPPIX) or hemin, which inhibit or induce HO-1 activity, respectively. The results show that T. gondii infection induced high levels of HO-1 expression in the lung of BALB/c and C57BL6 mice. The animals treated with ZnPPIX presented higher parasitism in the lungs of both lineages of mice, whereas hemin treatment decreased the parasite replication in this organ and in the small intestine of infected C57BL/6 mice. Furthermore, C57BL/6 mice infected with T. gondii and treated with hemin showed higher levels of IDO expression in the lungs and small intestine than uninfected mice. In conclusion, our data suggest that HO-1 activity is involved in the control of T. gondii in the lungs of both mouse lineages, whereas the hemin, a HO-1 inducer, seems to be involved in the control of parasitism in the small intestine of C57BL/6 mice.


Subject(s)
Gene Expression Regulation , Heme Oxygenase-1/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Toxoplasma/physiology , Toxoplasmosis, Animal/enzymology , Toxoplasmosis, Animal/genetics , Animals , Cytokines/genetics , Cytokines/metabolism , Female , Heme Oxygenase-1/metabolism , Hemin/pharmacology , Immunohistochemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Intestine, Small/enzymology , Intestine, Small/metabolism , Intestine, Small/parasitology , Lung/enzymology , Lung/metabolism , Lung/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protoporphyrins/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Toxoplasmosis, Animal/parasitology
2.
PLoS One ; 8(9): e75138, 2013.
Article in English | MEDLINE | ID: mdl-24086456

ABSTRACT

Toxoplasma gondii induces a potent IL-12 response early in infection that results in IFN-γ-dependent control of parasite growth. It was previously shown that T. gondii soluble tachyzoite antigen (STAg) injected 48 hr before intraperitoneal infection reduces lipoxin A4 and 5-lipoxygenase (5-LO)-dependent systemic IL-12 and IFN-γ production as well as hepatic immunopathology. This study investigated the ability of STAg-pretreatment to control the fatal intestinal pathology that develops in C57BL/6 mice orally infected with 100 T. gondii cysts. STAg-pretreatment prolonged the animals' survival by decreasing tissue parasitism and pathology, mainly in the ilea. Protection was associated with decreases in the systemic IFN-γ levels and IFN-γ and TNF message levels in the ilea and with increased TGF-ß production in this tissue, but protection was independent of 5-LO and IL-4. STAg-pretreatment decreased CD4(+) T cell, NK cell, CD11b(+) monocyte and CD11b(+)CD11c(+) dendritic cell numbers in the lamina propria and increased CD8(+) T cells in the intestinal epithelial compartment. In parallel, decreases were observed in iNOS and IL-17 expression in this organ. These results demonstrate that pretreatment with STAg can induce the recruitment of protective CD8(+) T cells to the intraepithelial compartment and decrease proinflammatory immune mechanisms that promote intestinal pathology in T. gondii infection.


Subject(s)
Antigens, Protozoan/pharmacology , Immunity, Cellular/immunology , Intestines/parasitology , Toxoplasmosis, Animal/prevention & control , Analysis of Variance , Animals , Antigens, Protozoan/immunology , DNA Primers/genetics , Female , Flow Cytometry , Immunohistochemistry , Interferon-gamma/immunology , Interleukin-17/immunology , Intestines/immunology , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/immunology , Real-Time Polymerase Chain Reaction , Toxoplasmosis, Animal/immunology , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...