Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Materials (Basel) ; 17(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473449

ABSTRACT

In connection with the growing importance of the efficiency and reliability of tools in industrial sectors, our research represents a key step in the effort to optimize production processes and increase their service life in real conditions. The study deals with the comparison of the tribological properties of three tool steels, two of which were produced by the powder metallurgy method-ASP2017 and ASP2055-and the last tool steel underwent the conventional production method-X153CrMoV12. The samples were mechanically machined with the finishing technology of turning and, finally, heat treated (Q + T). The study focused on the evaluation of hardness, resulting microstructure, wear resistance, and coefficient of friction (COF). The ball-on-disc method was chosen as part of the COF and wear resistance test. The tribological test took place at room temperature with dry friction to accelerate surface wear. The pressing material was a hardened steel ball G40 (DIN 100Cr6). Measurements were performed at loads of 10 N, 6 N, and 2 N and turning radii of 13 mm, 18 mm, and 23 mm, which represents a peripheral speed of 0.34, 0.47, and 0.60 m/s. The duration of the measurement for each sample was 20 min. The results showed that the COF of powder steels showed almost the same values, while a significant difference occurred with the increase of the radius rotation in the case of conventional steel. The results within the friction mechanism showed two types of wear, namely, adhesive and abrasive wear, depending on the Q + T process. From a tribological point of view in terms of wear, it was possible to state that the material ASP2055 after Q + T showed the lowest rate of wear of all the tested steels.

3.
Materials (Basel) ; 16(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834629

ABSTRACT

The main task that the article introduces is the experimental study of how the geometry of contact surfaces affects the quality and mechanical properties of a rotary friction weld (RFW), as well as the findings of whether the RFW technology is suitable for the titanium alloy Ti6Al4V. The experiments were carried out for specimens with a diameter of 10 mm and were performed at 900 RPM. Three types of geometry were proposed for the RFW process: flat on flat, flat on 37.5° and flat on 45°. Based on these results, the best tested flat geometry was selected from the perspective of quality and economic efficiency. The welded joints were subjected to microstructural analysis, tensile testing, microhardness testing, and fractography, as well as spectral analysis of the fracture surface and EDS map analysis of oxygen. The flat geometry of the contact surface resulted in the least saturation with interstitial elements from the atmosphere. Fracturing in the RFW zone led to a brittle fracture with a certain proportion of plastic deformation. A pure ductile fracture occurred in specimens fractured in the HAZ region, where the difference in UTS values compared to specimens fractured by a brittle fracture mechanism was not significant. The average UTS value was 478 MPa.

4.
Materials (Basel) ; 16(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37895778

ABSTRACT

Incineration is currently the standard way of disposing of municipal waste. It uses components protected by high-temperature-resistant layers of materials, such as Inconel alloys. Therefore, the objective of the current paper is to study the mechanical properties and structure of a bimetallic Inconel 625-16Mo3 steel tube. The Inconel 625 layer was 3.5 mm thick and was applied to the surface of the tube with a wall thickness of 7 mm via the cold metal transfer method. The bimetallic tube was bent using a supercritical bend (d ≤ 0.7D). This paper is focused on the investigation of the material changes in the Inconel 625 layer areas influenced by the maximum tensile and compressive stresses after the bend. The change in layer thickness after the bend was evaluated and compared to the non-deformed tube. In addition, the local mechanical properties (nanohardness, Young modulus) across the indicated interfacial areas using quasistatic nanoindentation were investigated. Subsequently, a thorough microstructure observation was carried out in areas with maximum tensile and compressive stresses to determine changes in the morphology and size of dendrites related to the effect of tensile or compressive stresses induced by bending. It was found that the grain featured a stretched secondary dendrite axis in the area of tensile stress, but compressive stress imparted a prolongation of the primary dendrite axis.

5.
Materials (Basel) ; 16(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37512287

ABSTRACT

The presented work deals with the investigation of mechanical tribological properties on Inconel 625 superalloy, which is welded on a 16Mo3 steel pipe. The wall thickness of the basic steel pipe was 7 mm, while the average thickness of the welded layer was 3.5 mm. The coating was made by the cold metal transfer (CMT) method. A supercritical bending of 180° was performed on the material welded in this way while cold. The mechanical properties evaluated were hardness, wear resistance, coefficient of friction (COF) and change in surface roughness for both materials. The UMT Tribolab laboratory equipment was used to measure COF and wear resistance by the Ball-on-flat method, which used a G40 steel pressure ball. The entire process took place at an elevated temperature of 500 °C. The measured results show that the materials after bending are reinforced by plastic deformation, which leads to an increase in hardness and also resistance to wear. Superalloy Inconel 625 shows approximately seven times higher rate of wear compared to steel 16Mo3 due to the creation of local oxidation areas that support the formation of abrasive wear and do not create a solid lubricant, as in the case of steel 16Mo3. Strain hardening leads to a reduction of possible wear on Inconel 625 superalloy as well as on 16Mo3 steel. In the case of the friction process, the places of supercritical bending of the structure showed the greatest resistance to wear compared to the non-deformed structure.

6.
Materials (Basel) ; 16(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37374656

ABSTRACT

The paper deals with the dilatometric study of high-alloy martensitic tool steel with the designation M398 (BÖHLER), which is produced by the powder metallurgy process. These materials are used to produce screws for injection molding machines in the plastic industry. Increasing the life cycle of these screws leads to significant economic savings. This contribution focuses on creating the CCT diagram of the investigated powder steel in the range of cooling rates from 100 to 0.01 °C/s. JMatPro® API v7.0 simulation software was used to compare the experimentally measured CCT diagram. The measured dilatation curves were confronted with a microstructural analysis, which was evaluated using a scanning electron microscope (SEM). The M398 material contains a large number of carbide particles that occur in the form of M7C3 and MC and are based on Cr and V. EDS analysis was used to evaluate the distribution of selected chemical elements. A comparison of the surface hardness of all samples in relation to the given cooling rates was also carried out. Subsequently, the nanoindentation properties of the formed individual phases as well as the carbides, where the nanohardness and reduced modulus of elasticity (carbides and matrix) were evaluated.

7.
Materials (Basel) ; 16(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36769985

ABSTRACT

This paper deals with the study of high-strength M300 maraging steel produced using the selective laser melting method. Heat treatment consists of solution annealing and subsequent aging; the influence of the selected aging temperatures on the final mechanical properties-microhardness and compressive yield strength-and the structure of the maraging steel are described in detail. The microstructure of the samples is examined using optical and electron microscopy. The compressive test results show that the compressive yield strength increased after heat treatment up to a treatment temperature of 480 °C and then gradually decreased. The sample aged at 480 °C also exhibited the highest observed microhardness of 562 HV. The structure of this sample changed from the original melt pools to a relatively fine-grained structure with a high fraction of high-angle grain boundaries (72%).

8.
Polymers (Basel) ; 14(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35566934

ABSTRACT

Within the herein presented research, we studied the applicability of flax fabrics for composite parts in personal watercrafts in order to enhance damping of vibrations from the engine and noise reduction (which is relatively high for contemporary carbon constructions). Since the composite parts are intended to be exposed to humid environments requiring high levels of mechanical properties, a carbon-flax composite was selected. Samples of carbon, fiberglass, flax, and hybrid carbon-flax twill and biax fabrics were subjected to tensile and three-point bending tests. The mechanical properties were also tested after exposure of the samples to a humid environment. Damping was assessed by vibration and noise measurements directly on the complete float for samples as well as real parts. The hybrid carbon-flax material exhibited lower values of tensile strength than the carbon material (760 MPa compared to 463 MPa), but, at the same time, significantly higher than the other tested materials, or flax itself (115 MPa for a twill fabric). A similar trend in the results was observed for the three-point bending tests. Vibration tests and noise measurements showed reductions in vibration amplitude and frequency when using the carbon-flax hybrid material; the frequency response function for the watercraft part assembled from the hybrid material was 50% lower than for that made of carbon. Testing of samples located in a humid environment showed the necessity of surface treatment to prevent moisture absorption (mechanical properties were reduced at minimum by 28%). The tests confirmed that the hybrid material is satisfactory in terms of strength and its contribution to noise and vibration damping.

9.
Materials (Basel) ; 13(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297542

ABSTRACT

The paper is focused on investigation of the high-strength AISI 4340 steel at various temperature and deformation conditions. The article is divided into two specific analyses. The first is to examine the dilatation behavior of the steel at eight different cooling rates, namely, 100, 10, 5, 1, 0.5, 0.1, 0.05 and 0.01 °C·s-1. The mapping of the phase transformations due to varying cooling rates from the austenitizing temperature of 850 °C allows the construction of the CCT diagram for a given high-strength steel. These dilatation curves were also compared with the metallography of the selected samples for the proper construction of the CCT diagram. A further analysis of the high temperature deformation of high strength steel AISI 4340 was performed in the range of temperature 900-1200 °C, and the strain rate was in the range from 0.001 to 10 s-1 with maximum value of the true strain 0.9. Changes in the microstructure were observed using light optical microscopy (LOM). The effect of hot deformation temperature on true stress, peak stress and true strain was investigated. The hardness of all deformed samples, depending on the temperature, the deformation rate and the peak stress σp overall together related with hardness, has also been evaluated.

10.
Materials (Basel) ; 13(10)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443932

ABSTRACT

Tool steels are used in stamping, shearing processes, and as cutting tools due to their good mechanical properties. During their working cycle, steels are subject to aggressive conditions such as heat stress, fatigue, and wear. In this paper, three tool steels, namely X153CrMoV12, X37CrMoV5-1, and X45NiCrMo4 were selected against two types of bearing balls, ZrO2 and X46Cr1. All measurements were performed on a UMT TriboLab universal tribometric instrument under dry conditions. The main objective of the experiment was to analyze and compare tool steel wear in contact with two kinds of bearing balls with a diameter of 4.76 mm. This evaluation is focused on the hardness, surface roughness, and microstructure of all samples and on the impact of the input parameters on the resulting wear. All three types of tool steels were measured in the basic annealed state and, subsequently, in the state after hardening and tempering. Experimental results show that tool steels, belonging to high strength steels, can successfully represent wear resistant steels. The content of carbide elements, their size, and shape in the microstructure play an important role in the friction process and subsequent wear. Three types of loads were used and compared in the experiments 30, 60, and 90 N. Increasing the load results in significant degradation of the material on the sample surface. Lastly, the impact of hardness and roughness of materials on wear has also been proven. If abrasive wear occurs in the friction process, there is a greater degree of wear than that of adhesive wear. This is due to less abrasive particles, which behave like a cutting wedge and are subject to subsequent deformation strengthening due to the load increase, which adversely affects the further friction process. Analysis of the results showed that the ZrO2 ceramic ball showed significantly better wear values when compared to the X46Cr13 stainless steel ball. It also improves the values of the coefficient of friction with respect to the type of wear that occurs when the experimental materials and counterparts are in contact.

SELECTION OF CITATIONS
SEARCH DETAIL
...