Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Small Methods ; 7(12): e2300496, 2023 12.
Article in English | MEDLINE | ID: mdl-37462244

ABSTRACT

The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.


Subject(s)
Artificial Cells , Artificial Cells/chemistry
2.
Lab Chip ; 22(13): 2403-2422, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35703438

ABSTRACT

Single cell multimodal analysis is at the frontier of single cell research: it defines the roles and functions of distinct cell types through simultaneous analysis to provide unprecedented insight into cellular processes. Current single cell approaches are rapidly moving toward multimodal characterizations. It replaces one-dimensional single cell analysis, for example by allowing for simultaneous measurement of transcription and post-transcriptional regulation, epigenetic modifications and/or surface protein expression. By providing deeper insights into single cell processes, multimodal single cell analyses paves the way to new understandings in various cellular processes such as cell fate decisions, physiological heterogeneity or genotype-phenotype linkages. At the forefront of this, microfluidics is key for high-throughput single cell analysis. Here, we present an overview of the recent multimodal microfluidic platforms having a potential in biomedical research, with a specific focus on their potential clinical applications.


Subject(s)
Microfluidics , Single-Cell Analysis , Epigenesis, Genetic , Microfluidics/methods , Single-Cell Analysis/methods
3.
ACS Synth Biol ; 10(11): 2772-2783, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34677942

ABSTRACT

The process of optimizing the properties of biological molecules is paramount for many industrial and medical applications. Directed evolution is a powerful technique for modifying and improving biomolecules such as proteins or nucleic acids (DNA or RNA). Mimicking the mechanism of natural evolution, one can enhance a desired property by applying a suitable selection pressure and sorting improved variants. Droplet-based microfluidic systems offer a high-throughput solution to this approach by helping to overcome the limiting screening steps and allowing the analysis of variants within increasingly complex libraries. Here, we review cases where successful evolution of biomolecules was achieved using droplet-based microfluidics, focusing on the molecular processes involved and the incorporation of microfluidics to the workflow. We highlight the advantages and limitations of these microfluidic systems compared to low-throughput methods and show how the integration of these systems into directed evolution workflows can open new avenues to discover or improve biomolecules according to user-defined conditions.


Subject(s)
Directed Molecular Evolution/methods , Animals , DNA/genetics , High-Throughput Screening Assays/methods , Humans , Microfluidic Analytical Techniques/methods , Microfluidics/methods , RNA/genetics
4.
Sci Rep ; 11(1): 18192, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521865

ABSTRACT

Trypanosome parasites are infecting mammals in Sub-Saharan Africa and are transmitted between hosts through bites of the tsetse fly. The transmission from the insect vector to the mammal host causes a number of metabolic and physiological changes. A fraction of the population continuously adapt to the immune system of the host, indicating heterogeneity at the population level. Yet, the cell to cell variability in populations is mostly unknown. We develop here an analytical method for quantitative measurements at the single cell level based on encapsulation and cultivation of single-cell Trypanosoma brucei in emulsion droplets. We first show that mammalian stage trypanosomes survive for several hours to days in droplets, with an influence of droplet size on both survival and growth. We unravel various growth patterns within a population and find that droplet cultivation of trypanosomes results in 10-fold higher cell densities of the highest dividing cell variants compared to standard cultivation techniques. Some variants reach final cell titers in droplets closer to what is observed in nature than standard culture, of practical interest for cell production. Droplet microfluidics is therefore a promising tool for trypanosome cultivation and analysis with further potential for high-throughput single cell trypanosome analysis.


Subject(s)
Cell Division , Microfluidics/methods , Single-Cell Analysis/methods , Trypanosoma brucei brucei/physiology , Biological Variation, Population , Emulsions/chemistry , Trypanosoma brucei brucei/genetics
5.
ISME J ; 15(7): 2057-2069, 2021 07.
Article in English | MEDLINE | ID: mdl-33568788

ABSTRACT

Adaptation of cell populations to environmental changes is mediated by phenotypic variability at the single-cell level. Enzyme activity is a key factor in cell phenotype and the expression of the alkaline phosphatase activity (APA) is a fundamental phytoplankton strategy for maintaining growth under phosphate-limited conditions. Our aim was to compare the APA among cells and species revived from sediments of the Bay of Brest (Brittany, France), corresponding to a pre-eutrophication period (1940's) and a beginning of a post-eutrophication period (1990's) during which phosphate concentrations have undergone substantial variations. Both toxic marine dinoflagellate Alexandrium minutum and the non-toxic dinoflagellate Scrippsiella acuminata were revived from ancient sediments. Using microfluidics, we measured the kinetics of APA at the single-cell level. Our results indicate that all S. acuminata strains had significantly higher APA than A. minutum strains. For both species, the APA in the 1990's decade was significantly lower than in the 1940's. For the first time, our results reveal both inter and intraspecific variabilities of dinoflagellate APA and suggest that, at a half-century timescale, two different species of dinoflagellate may have undergone similar adaptative evolution to face environmental changes and acquire ecological advantages.


Subject(s)
Dinoflagellida , Alkaline Phosphatase/genetics , Dinoflagellida/genetics , Eutrophication , France , Phytoplankton
6.
Sci Rep ; 10(1): 10061, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32555402

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Science ; 368(6491): 649-654, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32381722

ABSTRACT

Nature integrates complex biosynthetic and energy-converting tasks within compartments such as chloroplasts and mitochondria. Chloroplasts convert light into chemical energy, driving carbon dioxide fixation. We used microfluidics to develop a chloroplast mimic by encapsulating and operating photosynthetic membranes in cell-sized droplets. These droplets can be energized by light to power enzymes or enzyme cascades and analyzed for their catalytic properties in multiplex and real time. We demonstrate how these microdroplets can be programmed and controlled by adjusting internal compositions and by using light as an external trigger. We showcase the capability of our platform by integrating the crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle, a synthetic network for carbon dioxide conversion, to create an artificial photosynthetic system that interfaces the natural and the synthetic biological worlds.


Subject(s)
Carbon Dioxide/metabolism , Chloroplasts/metabolism , Chloroplasts/radiation effects , Acyl Coenzyme A , Biocatalysis , Biomimetics , Carbon Cycle , Light , Photosynthesis/radiation effects , Spinacia oleracea
8.
Anal Chem ; 92(7): 4908-4916, 2020 04 07.
Article in English | MEDLINE | ID: mdl-31909981

ABSTRACT

Functional screenings in droplet-based microfluidics require the analysis of various types of activities of individual cells. When screening for enzymatic activities, the link between the enzyme of interest and the information-baring molecule, the DNA, must be maintained to relate phenotypes to genotypes. This linkage is crucial in directed evolution experiments or for the screening of natural diversity. Micro-organisms are classically used to express enzymes from nucleic acid sequences. However, little information is available regarding the most suitable expression system for the sensitive detection of enzymatic activity at the single-cell level in droplet-based microfluidics. Here, we compare three different expression systems for l-asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1), an enzyme of therapeutic interest that catalyzes the conversion of l-asparagine to l-aspartic acid and ammonia. We developed three expression vectors to produce and localize l-asparaginase (l-ASNase) in E. coli either in the cytoplasm, on the surface of the inner membrane (display), or in the periplasm. We show that the periplasmic expression is the most optimal strategy combining both a good yield and a good accessibility for the substrate without the need for lysing the cells. We suggest that periplasmic expression may provide a very efficient platform for screening applications at the single-cell level in microfluidics.


Subject(s)
Asparaginase/metabolism , Escherichia coli/genetics , Microfluidic Analytical Techniques , Asparaginase/analysis , Escherichia coli/metabolism , Particle Size , Surface Properties
9.
Anal Chem ; 91(21): 13978-13985, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31576738

ABSTRACT

We present an acoustofluidic device for fluorescently triggered merging of surfactant-stabilized picoliter droplet pairs at high throughput. Droplets that exceed a preset fluorescence threshold level are selectively merged by a traveling surface acoustic wave (T-SAW) pulse. We characterize the operation of our device by analyzing the merging efficiency as a function of acoustic pulse position, duration, and acoustic pressure amplitude. We probe droplet merging at different droplet rates and find that efficient merging occurs above a critical acoustic power level. Our results indicate that the efficiency of acoustically induced merging of surfactant stabilized droplets is correlated with acoustic streaming velocity. Finally, we discuss how both time-averaged and instantaneous acoustic pressure fields can affect the integrity of surfactant layers. Our technique, by allowing the merging of up to 105 droplets per hour, shows great potential for integration into microfluidic systems for high-throughput and high-content screening applications.

10.
Lab Chip ; 19(13): 2220-2232, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31157806

ABSTRACT

The high-throughput selection of individual droplets is an essential function in droplet-based microfluidics. Fluorescence-activated droplet sorting is achieved using electric fields triggered at rates up to 30 kHz, providing the ultra-high throughput relevant in applications where large libraries of compounds or cells must be analyzed. To achieve such sorting frequencies, electrodes have to create an electric field distribution that generates maximal actuating forces on the droplet while limiting the induced droplet deformation and avoid disintegration. We propose a metric characterizing the performance of an electrode design relative to the theoretical optimum and analyze existing devices using full 3D simulations of the electric fields. By combining parameter optimization with numerical simulation we derive rational design guidelines and propose optimized electrode configurations. When tested experimentally, the optimized design show significantly better performance than the standard designs.

11.
Curr Opin Biotechnol ; 55: 134-150, 2019 02.
Article in English | MEDLINE | ID: mdl-30326407

ABSTRACT

Plankton produces numerous chemical compounds used in cosmetics and functional foods. They also play a key role in the carbon budget on the Earth. In a context of global change, it becomes important to understand the physiological response of these microorganisms to changing environmental conditions. Their adaptations and the response to specific environmental conditions are often restricted to a few active cells or individuals in large populations. Using analytical capabilities at the subnanoliter scale, microfluidic technology has also demonstrated a high potential in biological assays. Here, we review recent advances in microfluidic technologies to overcome the current challenges in high content analysis both at population and the single cell level.


Subject(s)
Microfluidics/methods , Plankton/metabolism , Research , Cells/metabolism , Humans , Hydrostatic Pressure , Plankton/growth & development , Water Quality
12.
Nat Commun ; 9(1): 2391, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921909

ABSTRACT

Self-sustained metabolic pathways in microcompartments are the corner-stone for living systems. From a technological viewpoint, such pathways are a mandatory prerequisite for the reliable design of artificial cells functioning out-of-equilibrium. Here we develop a microfluidic platform for the miniaturization and analysis of metabolic pathways in man-made microcompartments formed of water-in-oil droplets. In a modular approach, we integrate in the microcompartments a nicotinamide adenine dinucleotide (NAD)-dependent enzymatic reaction and a NAD-regeneration module as a minimal metabolism. We show that the microcompartments sustain a metabolically active state until the substrate is fully consumed. Reversibly, the external addition of the substrate reboots the metabolic activity of the microcompartments back to an active state. We therefore control the metabolic state of thousands of independent monodisperse microcompartments, a step of relevance for the construction of large populations of metabolically active artificial cells.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Metabolic Networks and Pathways , Microfluidics/methods , Bacteria/cytology , Cytoplasmic Vesicles/metabolism , Gluconates/metabolism , Glucose-6-Phosphate/metabolism , Glucosephosphate Dehydrogenase/metabolism , Kinetics , Models, Biological , NAD/metabolism
13.
Angew Chem Int Ed Engl ; 57(41): 13382-13392, 2018 10 08.
Article in English | MEDLINE | ID: mdl-29749673

ABSTRACT

A large German research consortium mainly within the Max Planck Society ("MaxSynBio") was formed to investigate living systems from a fundamental perspective. The research program of MaxSynBio relies solely on the bottom-up approach to synthetic biology. MaxSynBio focuses on the detailed analysis and understanding of essential processes of life through modular reconstitution in minimal synthetic systems. The ultimate goal is to construct a basic living unit entirely from non-living components. The fundamental insights gained from the activities in MaxSynBio could eventually be utilized for establishing a new generation of biotechnological processes, which would be based on synthetic cell constructs that replace the natural cells currently used in conventional biotechnology.

14.
Angew Chem Int Ed Engl ; 57(26): 7780-7784, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29683257

ABSTRACT

The fabrication of stable colloidosomes derived from water-in-water Pickering-like emulsions are described that were produced by addition of fluorescent amine-modified polystyrene latex beads to an aqueous two-phase system consisting of dextran-enriched droplets dispersed in a PEG-enriched continuous phase. Addition of polyacrylic acid followed by carbodiimide-induced crosslinking with dextran produces hydrogelled droplets capable of reversible swelling and selective molecular uptake and exclusion. Colloidosomes produced specifically in all-water systems could offer new opportunities in microencapsulation and the bottom-up construction of synthetic protocells.

15.
Anal Chem ; 90(6): 4174-4181, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29464952

ABSTRACT

One way for phytoplankton to survive orthophosphate depletion is to utilize dissolved organic phosphorus by expressing alkaline phosphatase. The actual methods to assay alkaline phosphate activity-either in bulk or as a presence/absence of enzyme activity-fail to provide information on individual living cells. In this context, we develop a new microfluidic method to compartmentalize cells in 0.5 nL water-in-oil droplets and measure alkaline phosphatase activity at the single-cell level. We use enzyme-labeled fluorescence (ELF), which is based on the hydrolysis of ELF-P substrate, to monitor in real time and at the single-cell level both qualitative and quantitative information on cell physiology (i.e., localization and number of active enzyme sites and alkaline phosphatase kinetics). We assay the alkaline phosphatase activity of Tetraselmis sp. as a function of the dissolved inorganic phosphorus concentration and show that the time scale of the kinetics spans 1 order of magnitude. The advantages of subnanoliter-scale compartmentalization in droplet-based microfluidics provide a precise characterization of a population with single-cell resolution. Our results highlight the key role of cell physiology to efficiently access dissolved organic phosphorus.


Subject(s)
Alkaline Phosphatase/metabolism , Chlorophyta/enzymology , Enzyme Assays/instrumentation , Lab-On-A-Chip Devices , Phytoplankton/enzymology , Chlorophyta/metabolism , Hydrolysis , Phosphorus/metabolism , Phytoplankton/metabolism , Single-Cell Analysis/instrumentation
16.
Microsyst Nanoeng ; 4: 33, 2018.
Article in English | MEDLINE | ID: mdl-31057921

ABSTRACT

Fluorescence-activated droplet sorting (FADS) is one of the most important features provided by droplet-based microfluidics. However, to date, it does not allow to compete with the high-throughput multiplexed sorting capabilities offered by flow cytometery. Here, we demonstrate the use of a dielectrophoretic-based FADS, allowing to sort up to five different droplet populations simultaneously. Our system provides means to select droplets of different phenotypes in a single experimental run to separate initially heterogeneous populations. Our experimental results are rationalized with the help of a numerical model of the actuation of droplets in electric fields providing guidelines for the prediction of sorting designs for upscaled or downscaled microsystems.

17.
Nat Mater ; 17(1): 89-96, 2018 01.
Article in English | MEDLINE | ID: mdl-29035355

ABSTRACT

Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.

18.
Angew Chem Int Ed Engl ; 56(44): 13689-13693, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28901673

ABSTRACT

We report on the formation of surfactant-based complex catanionic coacervate droplets in mixtures of decanoic acid and cetylpyridinium chloride or cetyltrimethylammonium bromide. We show that coacervation occurs over a broad range of composition, pH, and ionic strength. The catanionic coacervates consist of elongated micelles, sequester a wide range of solutes including water-soluble organic dyes, polysaccharides, proteins, enzymes, and DNA, and can be structurally stabilized by sodium alginate or gelatin-based hydrogelation. These results suggest that catanionic coacervates could be exploited as a novel surfactant-based membrane-free protocell model.

19.
Sci Rep ; 7(1): 1366, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28465615

ABSTRACT

Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.


Subject(s)
High-Throughput Screening Assays/methods , Microfluidic Analytical Techniques , Single-Cell Analysis/methods , Cell Proliferation , Cell Survival , Escherichia coli/isolation & purification , HL-60 Cells , High-Throughput Screening Assays/instrumentation , Humans , Lab-On-A-Chip Devices , Microfluidics , Single-Cell Analysis/instrumentation
20.
Proc Natl Acad Sci U S A ; 113(41): 11465-11470, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27688765

ABSTRACT

Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than [Formula: see text] to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning-here through ion exchange-unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...