Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Commun Biol ; 4(1): 804, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183751

ABSTRACT

The composition of wildlife communities can have strong effects on transmission of zoonotic vector-borne pathogens, with more diverse communities often supporting lower infection prevalence in vectors (dilution effect). The introduced Burmese python, Python bivittatus, is eliminating large and medium-sized mammals throughout southern Florida, USA, impacting local communities and the ecology of zoonotic pathogens. We investigated invasive predator-mediated impacts on ecology of Everglades virus (EVEV), a zoonotic pathogen endemic to Florida that circulates in mosquito-rodent cycle. Using binomial generalized linear mixed effects models of field data at areas of high and low python densities, we show that increasing diversity of dilution host (non-rodent mammals) is associated with decreasing blood meals on amplifying hosts (cotton rats), and that increasing cotton rat host use is associated with increasing EVEV infection in vector mosquitoes. The Burmese python has caused a dramatic decrease in mammal diversity in southern Florida, which has shifted vector host use towards EVEV amplifying hosts (rodents), resulting in an indirect increase in EVEV infection prevalence in vector mosquitoes, putatively elevating human transmission risk. Our results indicate that an invasive predator can impact wildlife communities in ways that indirectly affect human health, highlighting the need for conserving biological diversity and natural communities.


Subject(s)
Boidae/physiology , Culex/virology , Encephalitis Virus, Venezuelan Equine/isolation & purification , Host-Pathogen Interactions , Introduced Species , Mosquito Vectors/virology , Viral Zoonoses/transmission , Animals , Ecosystem , Female , Food Chain , Humans
2.
J Med Entomol ; 56(2): 329-333, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30668807

ABSTRACT

In several areas where Aedes aegypti (L.) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) have come in contact following successful invasions, Ae. aegypti have been rapidly displaced by Ae. albopictus. Recent work has confirmed that mating interference, in the form of satyrization, is likely a driving factor in these competitive displacements. However, in sites of sympatry, Ae. aegypti females evolve resistance to satyrization, and in the laboratory, satyrization-susceptible Ae. aegypti can evolve resistance within a few generations of cage exposure to Ae. albopictus. The resistance trait may be costly to maintain, as satyrization-resistant females have been shown to invest more time in mate selection. Here, we show that increased satyrization-resistance does not persist in the absence of satyrization pressure, confirming a cost to maintaining this trait. Ae. aegypti lines that had been previously selected for increased satyrization-resistance demonstrated rapid decreases in this trait over eight generations. Support for the hypothesis that condition-dependent mate preferences lead to variation in mating choice among individuals of differing quality within a population has been accumulating. Here we examine how age-related changes in reproductive effort or reproductive value may result in age-dependent mate choice. We hypothesize that older, lower quality individuals may be more likely to accept a subpar mating, in this case an interspecific mating. Our results demonstrate that mosquito age significantly affects interspecific mating rates with older mosquitoes (male and female) engaging in interspecific mating more frequently than younger counterparts (26.32 vs 9.41%). We discuss the possibility of age-related signal variation causing the breakdown of mating barriers with age.


Subject(s)
Aedes , Hybridization, Genetic , Mating Preference, Animal , Age Factors , Animals , Biological Evolution , Female , Male
3.
Mol Ecol ; 27(18): 3641-3654, 2018 09.
Article in English | MEDLINE | ID: mdl-30069966

ABSTRACT

While few species introduced into a new environment become invasive, those that do provide critical information on ecological mechanisms that determine invasions success and the evolutionary responses that follow invasion. Aedes albopictus (the Asian tiger mosquito) was introduced into the naturalized range of Aedes aegypti (the yellow fever mosquito) in the United States in the mid-1980s, resulting in the displacement of A. aegypti in much of the south-eastern United States. The rapid displacement was likely due to the superior competitive ability of A. albopictus as larvae and asymmetric mating interference competition, in which male A. albopictus mate with and sterilize A. aegypti females, a process called "satyrization." The goal of this study was to examine the genomic responses of a resident species to an invasive species in which the mechanism of character displacement is understood. We used double-digest restriction enzyme DNA sequencing (ddRADseq) to analyse outlier loci between selected and control lines of laboratory-reared A. aegypti females from two populations (Tucson, AZ and Key West, Florida, USA), and individual females classified as either "resisted" or "mated with" A. albopictus males via mating trials of wild-derived females from four populations in Florida. We found significant outlier loci in comparing selected and control lines and between mated and nonmated A. aegypti females in the laboratory and wild-derived populations, respectively. We found overlap in specific outlier loci between different source populations that support consistent genomic signatures of selection within A. aegypti. Our results point to regions of the A. aegypti genome and potential candidate genes that may be involved in mating behaviour, and specifically in avoiding interspecific mating choices.


Subject(s)
Aedes/genetics , Introduced Species , Selection, Genetic , Sexual Behavior, Animal , Aedes/classification , Animals , Female , Florida , Genetic Variation , Genetics, Population , Genome, Insect , Male , Mosquito Vectors/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
4.
J Med Entomol ; 53(6): 1385-1390, 2016 11.
Article in English | MEDLINE | ID: mdl-27493253

ABSTRACT

The spread of Aedes albopictus (Skuse) eastward in the mid-1980s from its initial establishment in Houston, TX, was associated with rapid declines and local disappearances of Aedes aegypti (L.) in Gulf Coast states and Florida where annual larval surveillance during the early 1990s described temporal and spatial patterns of competitive displacements in cemeteries and tire shops. Approximately 20 yr later in 2013-2014, we re-visited former collection sites and sampled aquatic immatures of these two species from tire shops in 10 cities on State Route 441 and from 9 cemeteries from Lakeland to Miami in southwest Florida. In the recent samples Ae. aegypti was recovered from three central Florida cities where it had not been detected in 1994, but its northern limit on Rte. 441, Apopka, did not change. Other evidence, such as trends at a few cemeteries, suggested a moderate resurgence of this species since 1994. Cage experiments that exposed female progeny of Ae. aegypti from recent Florida collection sites to interspecific mating by Ae. albopictus males showed that females from coexistence sites had evolved resistance to cross-mating, but Ae. aegypti from sites with no Ae. albopictus were relatively susceptible to satyrization. Habitat classifications of collection sites were reduced by principal component (PC) analysis to four variables that accounted for > 99% of variances; PCs with strong positive loadings for tree cover and ground vegetation were associated with collection sites yielding only Ae. albopictus Within the coexistence range of the two species, the numbers of Ae. aegypti among total Aedes collected were strongly correlated in stepwise logistic regression models with two habitat-derived PCs, distance from the coast, and annual rainfall and mean maximum temperatures at the nearest weather station. Subtle increases in the range of Ae. aegypti since its previous displacements are interpreted in the context of the evolution of resistance to mating interference, realized versus fundamental niches of the two species, and persisting competition with Ae. albopictus.


Subject(s)
Aedes/physiology , Animal Distribution , Hybridization, Genetic , Reproductive Isolation , Aedes/genetics , Aedes/growth & development , Animals , Ecosystem , Female , Florida , Larva/genetics , Larva/growth & development , Larva/physiology
5.
Insect Sci ; 23(2): 162-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26542083

ABSTRACT

Competitive displacements or reductions of resident populations of insects, often effected by a related species, may be caused by a variety of mechanisms. Satyrization is a form of mating interference in which males of one species mate with females of another species, significantly decreasing their fitness and not generating hybrids. Satyrization has been established to be the probable cause of competitive displacements of resident mosquitoes by invasive species, especially of Aedes aegypti by Aedes albopictus, two important vectors of dengue and chikungunya viruses. Mathematical models predict that even low levels of asymmetric mating interference are capable of producing competitive displacements or reductions. Couplings of virgin Ae. aegypti females with Ae. albopictus males effectively sterilize these females through the monogamizing actions of male accessory gland products, but the converse interspecific mating does not impact the future reproduction of Ae. albopictus females. Populations of Ae. aegypti exposed to satyrization quickly evolve resistance to interspecific mating, which is believed to ameliorate reproductive interference from, and promote co-existence with, Ae. albopictus. The evolution of satyrization resistance among Ae. aegypti in laboratory cages is accompanied by fitness costs, such as reduced fecundity and slower receptivity to conspecific males. Cage experiments and field observations indicate that Ae. albopictus males are capable of satyrizing females of other species of the Stegomyia subgenus, potentially leading to competitive displacements, and possible extinctions, especially of endemic species on islands. Examination of other examples of reproductive interference in insects reveals few parallels to the mechanism and outcomes of satyrization by Ae. albopictus. We conclude by posing the hypothesis that satyrization may favor the ecological success of Ae. albopictus, and suggest many lines for future research on this phenomenon.


Subject(s)
Aedes/physiology , Biological Evolution , Insect Vectors/physiology , Sexual Behavior, Animal , Animals , Genetic Fitness , Introduced Species
6.
Ann Entomol Soc Am ; 108(4): 513-518, 2015 Jul.
Article in English | MEDLINE | ID: mdl-27418696

ABSTRACT

Satyrization, a form of asymmetric reproductive interference, has recently been shown to play a role in competitive displacements of Aedes aegypti (L.) by Aedes albopictus (Skuse). Furthermore, female Ae. aegypti from populations in sympatry with Ae. albopictus have evolved reproductive character displacement and changes in mating behavior to reduce interspecific mating. In this article, we examine evolutionary responses of males to interspecific mating and show that satyrization has also evoked reproductive character displacement in males. We demonstrate that the presence of heterospecific females negatively influences conspecific mating success in male Ae. aegypti, most likely due to misdirected courting or mating efforts, and that males of this species from populations in sympatry with Ae. albopictus have evolved to be less influenced by the presence of heterospecific females than their allopatric counterparts. Conversely, we suggest that the presence of conspecifics may, in some circumstances, increase interspecific mating. This study demonstrates that co-occurrences of these two invasive species may lead to evolution and adaptation of reproductive behaviors to changing circumstances. Understanding the processes driving development of mate choice preferences or avoidance mechanisms may help predict future changes in the distribution and abundance of insect vectors or pests.

7.
Proc Natl Acad Sci U S A ; 110(8): 2888-92, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23359710

ABSTRACT

Recently, the highly invasive Asian tiger mosquito, Aedes albopictus, rapidly displaced resident populations of the yellow fever mosquito, Aedes aegypti in the southeastern United States and in Bermuda. Although multiple mechanisms of competitive displacement have been hypothesized, recent evidence of cross-insemination between these species in nature and the sterilizing effects of male accessory gland products asymmetrically favoring A. albopictus in interspecific matings support a role for satyrization (a form of reproductive interference) to explain the rapid displacements. Because of the drastic reproductive loss of A. aegypti females satyrized by A. albopictus males, we predicted selection for prezygotic isolation in populations of A. aegypti sympatric with A. albopictus. Exposures in cages demonstrated that female A. aegypti from populations in Florida sympatric with A. albopictus for the past 20 y were significantly less likely than nearby allopatric populations to mate with heterospecific males. Cross-inseminations of A. albopictus females by A. aegypti males were significantly less common, supporting the one-way direction of displacements observed in nature. Our results indicate rapid sexual selection leading to reproductive character displacement and the potential for satyr-resistant A. aegypti to recover from competitive displacements. These results have implications for increased risks of dengue transmission where these vector species meet worldwide.


Subject(s)
Aedes/virology , Dengue/transmission , Insect Vectors , Aedes/physiology , Animals , Female , Male , Reproduction , Sexual Behavior, Animal
8.
Vector Borne Zoonotic Dis ; 12(12): 1053-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22835152

ABSTRACT

The ability of sterile males to survive, disperse, find, and mate with wild females is key to the success of sterile insect technique (SIT). The Release of Insects carrying a Dominant Lethal (RIDL) system is a genetics-based SIT strategy for Aedes aegypti. We examine two aspects of insect performance, flight potential (dispersal ability) and teneral energy reserves, by comparing wild-type (WT) males with genetically-modified lines carrying the tetracycline-repressible constructs OX513A and OX3604C. Our results show significant differences in the flight capacity of the modified lines. OX513A males bred with tetracycline covered 38% less distance, while OX3604C males reared without tetracycline spent 21% less time in flight than their WT counterparts. Such differences in flight performance should be considered when designing release programs (e.g., by placing release sites sufficiently close together to achieve adequate coverage). All mosquito lines had similar teneral carbohydrate contents, though males of the OX3604C line contained more lipids. The addition of tetracycline to the larval diet did not influence the flight potential of the males; however, it did change the teneral sugar reserves of the WT and the lipid reserves of both the WT and the OX3604C lines.


Subject(s)
Aedes/physiology , Flight, Animal/physiology , Insect Vectors/physiology , Mosquito Control/methods , Yellow Fever/prevention & control , Aedes/drug effects , Aedes/genetics , Animal Distribution , Animals , Animals, Genetically Modified , Body Constitution , Carbohydrate Metabolism , Carbohydrates/analysis , Energy Metabolism , Female , Flight, Animal/drug effects , Genes, Dominant/genetics , Genes, Lethal/genetics , Glycogen/analysis , Glycogen/metabolism , Infertility, Male/genetics , Insect Vectors/drug effects , Insect Vectors/genetics , Lipid Metabolism , Lipids/analysis , Male , Mutation , Tetracycline/pharmacology , Wings, Animal , Yellow Fever/transmission
9.
PLoS One ; 6(10): e26086, 2011.
Article in English | MEDLINE | ID: mdl-22022518

ABSTRACT

The idea of implementing genetics-based insect control strategies modelled on the traditional SIT is becoming increasingly popular. In this paper we compare a genetically modified line of Aedes aegypti carrying a tetracycline repressible, lethal positive feedback system (OX513A) with its wild type counterpart with respect to their insemination capacities and the cost of courtship and mating. Genetically modified males inseminated just over half as many females as the wild type males during their lifetime. Providing days of rest from mating had no significant effect on the total number of females inseminated by males of either line, but it did increase their longevity. Producing sperm had a low cost in terms of energy investment; the cost of transferring this sperm to a receptive female was much higher. Continued mating attempts with refractory females suggest that males could not identify refractory females before investing substantial energy in courtship. Although over a lifetime OX513A males inseminated fewer females, the number of females inseminated over the first three days, was similar between males of the two lines, suggesting that the identified cost of RIDL may have little impact on the outcome of SIT-based control programmes with frequent releases of the genetically modified males.


Subject(s)
Aedes/genetics , Aedes/physiology , Insemination/physiology , Sexual Behavior, Animal/physiology , Animals , Animals, Genetically Modified , Body Size , Female , Longevity/physiology , Male , Rest/physiology
10.
PLoS One ; 6(6): e20699, 2011.
Article in English | MEDLINE | ID: mdl-21698096

ABSTRACT

The idea of implementing genetics-based insect control strategies modelled on the traditional SIT (Sterile Insect Technique), such as RIDL (Release of Insects carrying a Dominant Lethal), is becoming increasingly popular. In this paper, we compare a genetically modified line of Aedes aegypti carrying a tetracycline repressible, lethal positive feedback system (OX513A) with a genetically similar, unmodified counterpart and their respective responses to increasing larval rearing density using a constant amount of food per larva. The parameters that we examined were larval mortality, developmental rate (i.e., time to pupation), adult size and longevity. Analysis revealed some statistically significant differences between the life history traits we examined. The genetically modified OX513A line overall showed 5% lower larval survival as well as reduced adult longevity (20 vs 24 days mean lifespan) compared to the unmodified line. Furthermore, the OX513A line pupated about one day sooner, which could be advantageous in mass-rearing, but produced somewhat smaller adults than the unmodified line; this effect was more pronounced in females than in males. Increasing the larval rearing density delayed pupation, decreased adult longevity and reduced adult size in both lines. While the delay in pupation and the decrease in longevity were similar between the two lines, the decrease in adult size was more pronounced for OX513A males.Our study shows that in a controlled laboratory situation the transgenic sterile OX513A line may have somewhat reduced performance compared to its unmodified counterpart and that high rearing densities may further reduce performance. Laboratory-based cage trials as well as field trials are necessary to assess how the differences in life history traits documented here impact the males' success upon release. Furthermore, this paper highlights the potential value of optimisation of mass-rearing systems as optimised rearing methods may be able to alleviate performance issues associated with specific lines or with lab-adapted lines in general.


Subject(s)
Aedes/physiology , Aedes/genetics , Animals , Female , Life Cycle Stages , Longevity , Male
11.
PLoS One ; 4(3): e4676, 2009.
Article in English | MEDLINE | ID: mdl-19277119

ABSTRACT

BACKGROUND: Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. METHODOLOGY: We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gambiae with one of 4 isolates of the microsporidian Vavraia culicis and reared one group as an uninfected control. Within each treatment, we fed half the adult females on a mix of P. berghei ookinetes and blood and inoculated the other half with a negatively charged CM-25 Sephadex bead to evaluate the mosquitoes' melanisation response. CONCLUSIONS: The microsporidian-infected mosquitoes were less likely to harbour oocysts (58.5% vs. 81.8%), harboured fewer oocysts (8.9 oocysts vs. 20.7 oocysts) if the malaria parasite did develop and melanised the Sephadex bead to a greater degree (73% vs. 35%) than the controls. While the isolates differed in the number of oocysts and in the melanisation response, the stimulation of the immune response was not correlated with either measure of malaria development. Nevertheless, the consistent difference between microsporidian-infected and -uninfected mosquitoes--more effective melanisation and less successful infection by malaria--suggests that microsporidians impede the development of malaria by priming the mosquito's immune system.


Subject(s)
Anopheles/microbiology , Anopheles/parasitology , Insect Vectors/microbiology , Insect Vectors/parasitology , Microsporidia/physiology , Plasmodium berghei/growth & development , Animals , Anopheles/growth & development , Anopheles/immunology , Female , Host-Parasite Interactions , Insect Vectors/growth & development , Insect Vectors/immunology , Larva , Melanins/analysis , Microspheres , Oocysts , Pest Control, Biological
12.
Adv Parasitol ; 68: 315-27, 2009.
Article in English | MEDLINE | ID: mdl-19289199

ABSTRACT

Despite our efforts at malaria control, malaria remains one of our most serious and deadly diseases. The failure of control stems in part from the parasite's intense transmission in many areas and from the emergence and spread of resistance of the malaria parasites and their mosquito vectors against most of the chemicals used to attack them. New methods for control are desperately needed. However, new methods will be useful only if they are effective (i.e., decrease transmission substantially) and evolutionarily sustainable (i.e., evolution-proof, in that they prevent evolution from eroding efficacy). We suggest microsporidian parasites that infect mosquitoes could be potentially effective and sustainable agents for malaria control. They may be effective because they target several epidemiologically important traits: survival of larvae (and thus number of adult mosquitoes), adult longevity, biting rate and the development of malaria within the mosquitoes. Even if each trait is affected only moderately, the intensity of transmission can be reduced considerably. They may be evolution-proof, for the evolutionarily most important trait is juvenile survival, whereas the two epidemiologically most important factors are traits of the adult mosquito: biting rate and longevity. Under the intense microsporidian pressure of a control programme, it is likely (if not inevitable) that the larvae evolve to survive microsporidian infection. However, if this larval tolerance to microsporidians is genetically correlated with the adult traits, tolerant mosquitoes may not live as long and bite less frequently than microsporidian-sensitive ones. While such a trade-off has not been measured, combining several studies suggests indirectly a negative genetic correlation between larval tolerance and adult longevity. Therefore, evolution might not undermine control; rather it might increase its effectiveness. While the evolution of resistance may be inevitable, the failure of control need not be.


Subject(s)
Culicidae/parasitology , Malaria/prevention & control , Microsporidia/physiology , Mosquito Control/methods , Animals , Biological Evolution , Host-Parasite Interactions , Humans , Insecticide Resistance , Insecticides/pharmacology , Larva/parasitology , Life Cycle Stages , Malaria/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...