Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 79(1): 217-223, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28342212

ABSTRACT

PURPOSE: To determine whole-brain cerebral metabolic rate of oxygen (CMRO2 ), an improved imaging approach, based on radial encoding, termed radial OxFlow (rOxFlow), was developed to simultaneously quantify draining vein venous oxygen saturation (SvO2 ) and total cerebral blood flow (tCBF). METHODS: To evaluate the efficiency and precision of the rOxFlow sequence, 10 subjects were studied during a paradigm of repeated breath-holds with both rOxFlow and Cartesian OxFlow (cOxFlow) sequences. CMRO2 was calculated at baseline from OxFlow-measured data assuming an arterial O2 saturation of 97%, and the SvO2 and tCBF breath-hold responses were quantified. RESULTS: Average neurometabolic-vascular parameters across the 10 subjects for cOxFlow and rOxFlow were, respectively: SvO2 (%) baseline: 64.6 ± 8.0 versus 64.2 ± 6.6; SvO2 peak: 70.5 ± 8.5 versus 72.6 ± 5.4; tCBF (mL/min/100 g) baseline: 39.2 ± 3.8 versus 40.6 ± 8.0; tCBF peak: 53.2 ± 5.1 versus 56.1 ± 11.7; CMRO2 (µmol O2 /min/100 g) baseline: 111.5 ± 26.8 versus 120.1 ± 19.6. The above measures were not significantly different between sequences (P > 0.05). CONCLUSION: There was good agreement between the two methods in terms of the physiological responses measured. Comparing the two, rOxFlow provided higher temporal resolution and greater flexibility for reconstruction while maintaining high SNR. Magn Reson Med 79:217-223, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Oximetry/methods , Cerebrovascular Circulation , Female , Healthy Volunteers , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted , Male , Oxygen/chemistry , Oxygen Consumption/physiology , Respiration , Signal-To-Noise Ratio
2.
Prog Nucl Magn Reson Spectrosc ; 94-95: 1-10, 2016 05.
Article in English | MEDLINE | ID: mdl-27247282

ABSTRACT

Label-free methods to obtain hydrodynamic size from diffusion measurements are desirable in environments that contain multiple macromolecular species at a high total concentration: one example is the crowded cellular environment. In complex, multi-species macromolecular environments - in this article, we feature aqueous systems involving polymers, surfactants and proteins - the link between dynamics and size is harder to unpack due to macromolecular crowding and confinement. In this review, we demonstrate that the pulsed-field gradient NMR technique, with its spectral separation of different chemical components, is ideal for studying the dynamics of the entire system simultaneously and without labelling, in a wide range of systems. The simultaneous measurement of the dynamics of multiple components allows for internal consistency checks and enables quantitative statements about the link between macromolecular dynamics, size, complex formation and crowding in soft materials.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Peptides/chemistry , Polymers/chemistry , Proteins/chemistry , Surface-Active Agents/chemistry , Biophysical Phenomena , Diffusion , Ficoll/chemistry , Polyethylene Glycols/chemistry , Sodium Dodecyl Sulfate/chemistry , Water
3.
J Cereb Blood Flow Metab ; 35(10): 1616-22, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25966941

ABSTRACT

A recently reported quantitative magnetic resonance imaging (MRI) method denoted OxFlow has been shown to be able to quantify whole-brain cerebral metabolic rate of oxygen (CMRO2) by simultaneously measuring oxygen saturation (SvO2) in the superior sagittal sinus and cerebral blood flow (CBF) in the arteries feeding the brain in 30 seconds, which is adequate for measurement at baseline but not necessarily in response to neuronal activation. Here, we present an accelerated version of the method (referred to as F-OxFlow) that quantifies CMRO2 in 8 seconds scan time under full retention of the parent method's capabilities and compared it with its predecessor at baseline in 10 healthy subjects. Results indicate excellent agreement between both sequences, with mean bias of 2.2% (P=0.18, two-tailed t-test), 3.4% (P=0.08, two-tailed t-test), and 2.0% (P=0.56, two-tailed t-test) for SvO2, CBF, and CMRO2, respectively. F-OxFlow's potential to monitor dynamic changes in SvO2, CBF, and CMRO2 is illustrated in a paradigm of volitional apnea applied to five of the study subjects. The sequence captured an average increase in SvO2, CBF, and CMRO2 of 10.1±2.5%, 43.2±9.2%, and 7.1±2.2%, respectively, in good agreement with literature values. The method may therefore be suited for monitoring alterations in CBF and SvO2 in response to neurovascular stimuli.


Subject(s)
Brain Chemistry/physiology , Magnetic Resonance Imaging/methods , Metabolism/physiology , Oxygen Consumption/physiology , Adult , Apnea/metabolism , Cerebrovascular Circulation , Female , Humans , Image Processing, Computer-Assisted , Male , Oxygen/blood
4.
J Cardiovasc Magn Reson ; 17: 19, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25884943

ABSTRACT

BACKGROUND: Both age and smoking promote endothelial dysfunction and impair vascular reactivity. Here, we tested this hypothesis by quantifying new cardiovascular magnetic resonance (CMR)-based biomarkers in smokers and nonsmokers. METHODS: Study population: young non-smokers (YNS: N = 45, mean age = 30.2 ± 0.7 years), young smokers (YS: N = 39 mean age 32.1 ± 0.7 years), older non-smokers (ONS: N = 45, mean age = 57.8 ± 0.6 years), and older smokers (OS: N = 40, mean age = 56.3 ± 0.6 years), all without overt cardiovascular disease. Vascular reactivity was evaluated following cuff-induced hyperemia via time-resolved blood flow velocity and oxygenation (SvO2) in the femoral artery and vein, respectively. SvO2 dynamics yielded washout time (time to minimum SvO2), resaturation rate (upslope) and maximum change from baseline (overshoot). Arterial parameters included pulse ratio (PR), hyperemic index (HI) and duration of hyperemia (TFF). Pulse-wave velocity (PWV) was assessed in aortic arch, thoracoabdominal aorta and iliofemoral arteries. Ultrasound-based carotid intimal-medial thickness (IMT) and brachial flow-mediated dilation were measured for comparison. RESULTS: Age and smoking status were independent for all parameters. Smokers had reduced upslope (-28.4%, P < 0.001), increased washout time (+15.3%, P < 0.01), and reduced HI (-19.5%, P < 0.01). Among non-smokers, older subjects had lower upslope (-22.7%, P < 0.01) and overshoot (-29.4%, P < 0.01), elevated baseline pulse ratio (+14.9%, P < 0.01), central and peripheral PWV (all P < 0.05). Relative to YNS, YS had lower upslope (-23.6%, P < 0.01) and longer washout time (13.5%, P < 0.05). Relative to ONS, OS had lower upslope (-33.0%, P < 0.01). IMT was greater in ONS than in YNS (+45.6%, P < 0.001), and also in YS compared to YNS (+14.7%, P < 0.05). CONCLUSIONS: Results suggest CMR biomarkers of endothelial function to be sensitive to age and smoking independent of each other.


Subject(s)
Aorta/physiopathology , Endothelium, Vascular/physiopathology , Femoral Artery/physiopathology , Femoral Vein/physiopathology , Iliac Artery/physiopathology , Magnetic Resonance Imaging/methods , Smoking/adverse effects , Adult , Age Factors , Aged , Blood Flow Velocity , Brachial Artery/diagnostic imaging , Brachial Artery/physiopathology , Carotid Artery, Common/diagnostic imaging , Carotid Artery, Common/physiopathology , Carotid Intima-Media Thickness , Female , Humans , Hyperemia/physiopathology , Male , Middle Aged , Predictive Value of Tests , Pulse Wave Analysis , Regional Blood Flow , Risk Factors , Ultrasonography, Doppler , Vasodilation
5.
Magn Reson Med ; 73(6): 2122-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24975122

ABSTRACT

PURPOSE: In this work, we compare susceptometry-based oximetry (SBO) and two T2 -based methods for estimating resting baseline SvO2 in the superior sagittal sinus (SSS). METHODS: SBO is a field-mapping technique whereas in T2 -based methods the intravascular blood signal is isolated either with velocity-encoded projections [projection-based T2 (PT2 )] or a tag-control scheme [T2 -relaxation under spin tagging (TRUST)] after T2 -preparation. The measurements were performed on twelve healthy subjects (mean age = 33 ± 6 years) at 3 Tesla field strength. The reliability, precision, and reproducibility were examined for the three techniques. RESULTS: The mean (± standard deviation) SvO2 quantified by SBO, PT2 , and TRUST were found to be 65.9 ± 3.3, 65.6 ± 3.5, and 63.2 ± 4.1%. The standard deviation (SD) for 10 consecutive measurements in the quantified SvO2 was less than 2.7%, 4.7%, and 5.0% for SBO, PT2 , and TRUST across all subjects. In testing reproducibility across different days, the resulting SDs were 2.6, 3.5, and 2.0% for SBO, PT2 , and TRUST. CONCLUSION: The results indicate that all three SvO2 quantification techniques to be reliable with good agreement between PT2 and SBO while TRUST yielded slightly lower values compared with the other two techniques.


Subject(s)
Brain/metabolism , Magnetic Resonance Imaging/methods , Oximetry/methods , Oxygen/blood , Adult , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Male , Reproducibility of Results
6.
Eur Biophys J ; 42(5): 405-14, 2013 May.
Article in English | MEDLINE | ID: mdl-23389300

ABSTRACT

Pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) is used to obtain the true hydrodynamic size of complexes of peptides with sodium dodecyl sulfate SDS micelles. The peptide used in this study is a 19-residue antimicrobial peptide, GAD-2. Two smaller dipeptides, alanine-glycine (Ala-Gly) and tyrosine-leucine (Tyr-Leu), are used for comparison. We use PFG-NMR to simultaneously measure diffusion coefficients of both peptide and surfactant. These two inputs, as a function of SDS concentration, are then fit to a simple two species model that neglects hydrodynamic interactions between complexes. From this we obtain the fraction of free SDS, and the hydrodynamic size of complexes in a GAD-2-SDS system as a function of SDS concentration. These results are compared to those for smaller dipeptides and for peptide-free solutions. At low SDS concentrations ([SDS] ≤ 25 mM), the results self-consistently point to a GAD-2-SDS complex of fixed hydrodynamic size R = (5.5 ± 0.3) nm. At intermediate SDS concentrations (25 mM < [SDS] < 60 mM), the apparent size of a GAD-2-SDS complex shows almost a factor of two increase without a significant change in surfactant-to-peptide ratio within a complex, most likely implying an increase in the number of peptides in a complex. For peptide-free solutions, the self-diffusion coefficients of SDS with and without buffer are significantly different at low SDS concentrations but merge above [SDS] = 60 mM. We find that in order to obtain unambiguous information about the hydrodynamic size of a peptide-surfactant complex from diffusion measurements, experiments must be carried out at or below [SDS] = 25 mM.


Subject(s)
Cell Membrane/chemistry , Peptides/chemistry , Amino Acid Sequence , Diffusion , Dipeptides/chemistry , Magnetic Resonance Spectroscopy , Micelles , Molecular Sequence Data , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry
7.
J Phys Chem B ; 114(51): 17062-7, 2010 Dec 30.
Article in English | MEDLINE | ID: mdl-21126039

ABSTRACT

Protein aggregation is an important biophysical phenomenon, and it is technically challenging to quantify. Scattering studies in concentrated protein solutions are not in complete agreement over the existence of an equilibrium cluster phase. We use pulsed-field-gradient NMR spectroscopy to characterize diffusion in the long-time limit in concentrated lysozyme solutions and find strong evidence for the existence of an equilibrium phase that consists of both lysozyme monomers and clusters (aggregates). They indicate too that there is rapid exchange between monomer and aggregate on the NMR time scale, and that macroscopic measurables (e.g., the relaxation rate and the observed diffusion coefficient) reflect a weighted average of the two fractions. Our results are quantitatively compared, with no fit parameters, to simple theories of macromolecular crowding.


Subject(s)
Muramidase/chemistry , Diffusion , Magnetic Resonance Spectroscopy
8.
J Chem Phys ; 132(2): 024909, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20095711

ABSTRACT

A model complex-forming nonionic polymer-anionic surfactant system in aqueous solution has been studied at different surfactant concentrations. Using pulsed-field-gradient diffusion NMR spectroscopy, we obtain the self-diffusion coefficients of poly(ethylene glycol) (PEO) and sodium dodecyl sulfate (SDS) simultaneously and as a function of SDS concentration. In addition, we obtain NMR relaxation rates and chemical shifts as a function of SDS concentration. Within the context of a simple model, our experimental results yield the onset of aggregation of SDS on PEO chains (CAC=3.5 mM), a crossover concentration (C(2)=60 mM) which signals a sharp change in relaxation behavior, as well as an increase in free surfactant concentration and a critical concentration (C(m)=145 mM) which signals a distinct change in diffusion behavior and a crossover to a solution containing free micelles. C(m) also marks the concentration above which obstruction effects are definitely important. In addition, we obtain the concentration of SDS in monomeric form and in the form of free micelles, as well as the average number of SDS molecules in a PEO-SDS aggregate (N(Aggr)). Taken together, our results suggests continuous changes in the aggregation phenomenon over much of the concentration but with three distinct concentrations that signal changes in the nature of the aggregates.


Subject(s)
Polyethylene Glycols/chemistry , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Diffusion , Magnetic Resonance Spectroscopy , Micelles , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...