Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 560: 30-38, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30171830

ABSTRACT

The electrochemical modification of a glassy carbon electrode using reduced poly-4 nitroaniline (P-4NA) and it's applicability for determination of metallic ions was performed in this study. The electrode modification was performed by cyclic voltammetry in the potential range between 0.9 V and 1.4 V vs Ag/Ag+ (in 10 mM AgNO3) at the scan rate of 100 mV/s by 50 cycles in non-aqueous media. The reduction of nitro groups on the P-4NA modified glassy carbon electrode surface was performed in the potential range between -0.1 V and -0.8 V vs Ag/AgCl(Sat. KCl) at a scan rate of 100 mV/s in 100 mM aqueous HCl solution. The reduced P-4NA glassy carbon surface was modified with the murexide. The affinity of the modified glassy carbon electrode with some metallic ions was investigated by electrochemical impedance spectroscopy method in phosphate buffer solution (pH = 5).


Subject(s)
Dielectric Spectroscopy/methods , Metals, Heavy/chemistry , Aniline Compounds/chemistry , Carbon/chemistry , Cations, Divalent/chemistry , Electrochemistry , Electrodes , Environmental Pollution/analysis , Murexide/chemistry
2.
Food Chem ; 150: 246-53, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24360446

ABSTRACT

There are many important challenges related to food security analysis by application of chemical and electrochemical sensors. One critical parameter is the development of reliable tools, capable of performing an overall sensory analysis. In these systems, as much information as possible is required in relation to smell, taste and colour. Here, we investigated the possibility of using a multisensor data fusion approach, which combines an e-Nose and an e-Tongue, adept in generating combined aroma and taste profiles. In order to shed light on this concept, classification of various Tunisian fruit juices using a low-level of abstraction data fusion technique was attempted. Five tin oxide-based Taguchi Gas Sensors were applied in the e-Nose instrument and the e-Tongue was designed using six potentiometric sensors. Four different commercial brands along with eleven fruit juice varieties were characterised using the e-Nose and the e-Tongue as individual techniques, followed by a combination of the two together. Applying Principal Component Analysis (PCA) separately on the respective e-Nose and e-Tongue data, only few distinct groups were discriminated. However, by employing the low-level of abstraction data fusion technique, very impressive findings were achieved. The Fuzzy ARTMAP neural network reached a 100% success rate in the recognition of the eleven-fruit juices. Therefore, data fusion approach can successfully merge individual data from multiple origins to draw the right conclusions that are more fruitful when compared to the original single data. Hence, this work has demonstrated that data fusion strategy used to combine e-Nose and e-Tongue signals led to a system of complementary and comprehensive information of the fruit juices which outperformed the performance of each instrument when applied separately.


Subject(s)
Beverages/analysis , Data Mining/ethics , Fruit/chemistry , Odorants/analysis , Beverages/classification , Discriminant Analysis , Electronic Nose
3.
Langmuir ; 26(10): 7165-73, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20146497

ABSTRACT

In this report, we have introduced a revision of the chemical treatment influence on the surface thermodynamic properties of silicon dioxide (SiO(2)) and silicon nitride (Si(3)N(4)) solid thin layers. Some characterization techniques might be used to quantify the thermodynamic properties of solid surface and predict its ability in the adhesion phenomenon. In this work, we have used static and dynamic contact angle (CA) measurements to characterize both dioxide solid surfaces being treated by using the two procedures of cleaning and chemical activation. Qualitative and quantitative concepts of analysis, using the Van Oss approach, are based on the determination of dioxide surface hydrophilic and hydrophobic features and the thermodynamic parameters such as free energy, acid, base, and Lewis acid-base surface tension components. Electrochemical capacitance-potential measurements were carried out to study the reactivity of both silicon dioxide and silicon nitride surfaces for pH variation. Furthermore, the surface roughness of these insulators was examined by using the contact angle hysteresis (CAH) measurements and atomic force microscopy (AFM). It was concluded that CA technique can be used as a suitable and base method for the understanding of surface wettability and for the control of surface wetting behavior.


Subject(s)
Silicon Compounds/chemistry , Silicon Dioxide/chemistry , Thermodynamics , Hydrogen-Ion Concentration , Surface Properties
4.
Biosens Bioelectron ; 20(11): 2318-23, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15797333

ABSTRACT

A new urea biosensor for clinical applications was obtained by immobilization of urease within different latex polymers functionalized by hydroxy, acetate and lactobionate groups. Responses of these biosensors based on pH-ion-selective field effect insulator-semiconductor (IS) systems to urea additions were evaluated by capacitance measurements. UV-visible spectroscopy was used to check the urease activity in various matrixes. A good retention of the catalytic urease activity in the case of the cationic polymers was observed. In addition, rotating disk electrode experiments were carried out to determine the matrix permeability characteristics. Under optimal conditions, i.e. buffer capacity corresponding to 5 mM phosphate buffer, the urea enzyme insulator semiconductor (ENIS) sensors showed a linear response for urea concentrations in the range 10(-1.5) to 10(-4)M. Furthermore, kinetic parameters for the immobilized urease were obtained from Lineweaver-Burk plot. Clearly, a fast response and a good adhesion for the urease-acetate polymer composite films, prepared without using glutaraldehyde as cross-linking agent was observed.


Subject(s)
Biosensing Techniques/instrumentation , Coated Materials, Biocompatible/chemistry , Electrochemistry/instrumentation , Latex/chemistry , Urea/analysis , Urease/chemistry , Absorbable Implants , Biosensing Techniques/methods , Coated Materials, Biocompatible/analysis , Electric Conductivity , Electrochemistry/methods , Enzymes, Immobilized/analysis , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Latex/analysis , Materials Testing , Semiconductors , Urea/chemistry , Urease/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...