Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Blood ; 141(22): 2738-2755, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36857629

ABSTRACT

Primary resistance to tyrosine kinase inhibitors (TKIs) is a significant barrier to optimal outcomes in chronic myeloid leukemia (CML), but factors contributing to response heterogeneity remain unclear. Using single-cell RNA (scRNA) sequencing, we identified 8 statistically significant features in pretreatment bone marrow, which correlated with either sensitivity (major molecular response or MMR) or extreme resistance to imatinib (eventual blast crisis [BC] transformation). Employing machine-learning, we identified leukemic stem cell (LSC) and natural killer (NK) cell gene expression profiles predicting imatinib response with >80% accuracy, including no false positives for predicting BC. A canonical erythroid-specifying (TAL1/KLF1/GATA1) regulon was a hallmark of LSCs from patients with MMR and was associated with erythroid progenitor [ERP] expansion in vivo (P < .05), and a 2- to 10-fold (6.3-fold in group A vs 1.09-fold in group C) erythroid over myeloid bias in vitro. Notably, ERPs demonstrated exquisite TKI sensitivity compared with myeloid progenitors (P < .001). These LSC features were lost with progressive resistance, and MYC- and IRF1-driven inflammatory regulons were evident in patients who progressed to transformation. Patients with MMR also exhibited a 56-fold expansion (P < .01) of a normally rare subset of hyperfunctional adaptive-like NK cells, which diminished with progressive resistance, whereas patients destined for BC accumulated inhibitory NKG2A+ NK cells favoring NK cell tolerance. Finally, we developed antibody panels to validate our scRNA-seq findings. These panels may be useful for prospective studies of primary resistance, and in assessing the contribution of predetermined vs acquired factors in TKI response heterogeneity.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein Kinase Inhibitors , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Prospective Studies , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Blast Crisis , Drug Resistance, Neoplasm/genetics
2.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Article in English | MEDLINE | ID: mdl-34910301

ABSTRACT

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Subject(s)
Autoimmune Diseases/immunology , Flow Cytometry , Infections/immunology , Neoplasms/immunology , Animals , Chronic Disease , Humans , Mice , Practice Guidelines as Topic
3.
Immunity ; 53(2): 303-318.e5, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32579887

ABSTRACT

Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.


Subject(s)
Granulocyte Precursor Cells/cytology , Monocytes/cytology , Myelopoiesis/physiology , Neutrophils/cytology , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Single-Cell Analysis
4.
Eur J Immunol ; 49(10): 1457-1973, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31633216

ABSTRACT

These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.


Subject(s)
Allergy and Immunology/standards , Cell Separation/methods , Cell Separation/standards , Flow Cytometry/methods , Flow Cytometry/standards , Consensus , Humans , Phenotype
5.
Leukemia ; 33(6): 1542, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30787431

ABSTRACT

In the original version of this article there was a mistake in the spelling of the author Sujoy Ghosh, originally spelt Sujoy Gosh. This has now been corrected in both the PDF and HTML versions of the article.

6.
Blood Cell Ther ; 2(4): 58-67, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-37588101

ABSTRACT

Haematopoietic stem cell transplantation (HSCT) is now an established practice with over 70,000 transplants performed annually, and over 1.5 million around the world so far. The practice of HSCT has improved over the years due to advances in conditioning regiments, preparatory practices for patients leading up to the transplant, graft versus host disease (GVHD) and infection prophylaxis, as well as a better selection of patients. However, in many instances, the stem cells supplied to the patient may not be adequate for optimal transplantation outcomes. This may be seen in a few areas including umbilical cord blood transplantation, inadequate bone marrow, peripheral blood stem cell harvest, or gene therapy. Growing and expanding HSCs in culture would provide an increase in cell numbers prior to stem cell infusion and accelerate haematopoietic recovery, resulting in improved outcomes. Several new technologies have emerged in recent years, which have facilitated the expansion of haematopoietic stem and progenitor cells (HSPCs) in culture with good outcomes in vitro, in vivo, and in clinical trials. In this review, we will outline some of the reasons for the expansion of HSPCs as well as the new technologies facilitating the advances in HSCT.

7.
Leukemia ; 33(6): 1487-1500, 2019 06.
Article in English | MEDLINE | ID: mdl-30575819

ABSTRACT

The study of myelodysplastic syndromes (MDS) in murine models has now indicated the possible involvement of the bone marrow microenvironment in the generation of dysplastic hematopoietic cells. However, there is scant work on patient samples and the role of hypomethylating agents on the bone marrow stromal cells of MDS patients is unclear. We show that human MDS-MSCs exhibit phenotypic, transcriptomic and epigenetic abnormalities. Stimuli provided by MDS-MSCs impaired the growth and function of healthy HSPCs, which is further sustained autonomously in HSPCs for significant periods of time resulting in a failure for active hematopoietic engraftment across primary and secondary transplant recipients (chimerism: 0.34-91% vs 2.78%, engraftment frequencies: at 0.06 ± 0.02 vs full engraftment for MDS-MSC vs healthy groups, respectively). Hypomethylation of MDS-MSCs improved overall engraftment in most of the MDS-MSC groups tested (2/7 with p < 0.01, 3/7 with p < 0.05 and 2/7 with no significant difference). MDS-MSCs that fail to respond to hypomethylating therapy are associated with patients with rapid adverse disease transformation and this further suggests that MDS-MSCs may be an integral part of disease progression and have prognostic value as well as potential as a therapeutic target.


Subject(s)
Azacitidine/pharmacology , Biomarkers, Tumor/metabolism , DNA Methylation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hematopoiesis/drug effects , Mesenchymal Stem Cells/pathology , Myelodysplastic Syndromes/pathology , Adult , Aged , Aged, 80 and over , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Case-Control Studies , Cell Proliferation , Epigenesis, Genetic , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Proc Natl Acad Sci U S A ; 115(49): E11513-E11522, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30442667

ABSTRACT

Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the MHC class I-like protein MR1. Human MAIT cells predominantly express the CD8α coreceptor (CD8+), with a smaller subset lacking both CD4 and CD8 (double-negative, DN). However, it is unclear if these two MAIT cell subpopulations distinguished by CD8α represent functionally distinct subsets. Here, we show that the two MAIT cell subsets express divergent transcriptional programs and distinct patterns of classic T cell transcription factors. Furthermore, CD8+ MAIT cells have higher levels of receptors for IL-12 and IL-18, as well as of the activating receptors CD2, CD9, and NKG2D, and display superior functionality following stimulation with riboflavin-autotrophic as well as riboflavin-auxotrophic bacterial strains. DN MAIT cells display higher RORγt/T-bet ratio, and express less IFN-γ and more IL-17. Furthermore, the DN subset displays enrichment of an apoptosis gene signature and higher propensity for activation-induced apoptosis. During development in human fetal tissues, DN MAIT cells are more mature and accumulate over gestational time with reciprocal contraction of the CD8+ subset. Analysis of the T cell receptor repertoire reveals higher diversity in CD8+ MAIT cells than in DN MAIT cells. Finally, chronic T cell receptor stimulation of CD8+ MAIT cells in an in vitro culture system supports the accumulation and maintenance of the DN subpopulation. These findings define human CD8+ and DN MAIT cells as functionally distinct subsets and indicate a derivative developmental relationship.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , T-Lymphocyte Subsets/physiology , Female , Fetus , Gene Expression Regulation , Humans , Male , Nucleic Acid Amplification Techniques , Pregnancy , RNA/genetics , RNA/metabolism , Uterus/cytology
9.
Biol Blood Marrow Transplant ; 24(10): 1971-1980, 2018 10.
Article in English | MEDLINE | ID: mdl-29883796

ABSTRACT

The immunosuppressive properties of mesenchymal stromal cells (MSCs) have been clinically proven to be effective in treating graft-versus-host disease (GVHD). However, MSC therapy is limited by the need for laborious and expensive manufacturing processes that are fraught with batch-to-batch variability. Substitution of MSC therapy with key MSC-mediated immunomodulatory factors could be an option for GVHD treatment. Using a simulated in vitro model of the immunosuppressive effects of MSC on allogeneic graft reactions, a synergistic 2-factor combination (2FC) of CXCL5 and anti-CCL24 was identified from a panel of over 100 immunomodulatory factors as being superior to MSCs in the modulation of mixed lymphocyte reactions. This 2FC was superior to cyclosporine in ameliorating both moderate and severe GVHD while being equivalent to MSCs in moderate GVHD and superior to MSCs in severe GVHD. Its immunosuppressive efficacy could be further improved by extended treatment. Mechanistic studies revealed that in vitro the 2FC could only reduce the proliferation of Th 1 and Th 17, whereas in vivo CXCL5 acts in concert with anti-CCL24 antibody to reduce not only transplanted Th 1 and Th 17 but also cytotoxic T lymphocytes and natural killer cells to increase mouse immunosuppressive neutrophils without affecting human hematopoietic stem cell reconstitution. Concurrently, it reduced circulating human proinflammatory cytokines IFN-γ, IL-6, IL-17A, IL-8, macrophage inflammatory protein-1ß, and monocyte chemoattractant protein-1. Both in vitro and in vivo data suggest that CXCL5 and anti-CCL24 antibody act in concert to ameliorate GVHD via suppression of Th 1 and Th 17 responses. We propose that this novel 2FC could substitute for MSC therapy in GVHD treatment.


Subject(s)
Chemokine CCL24/pharmacology , Chemokine CXCL5/pharmacology , Cyclosporine/pharmacology , Graft vs Host Disease/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Animals , Disease Models, Animal , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Heterografts , Humans , Lymphocytes/immunology , Lymphocytes/pathology , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred ICR , Mice, Inbred NOD , Mice, SCID
10.
Stem Cells Transl Med ; 7(5): 376-393, 2018 05.
Article in English | MEDLINE | ID: mdl-29392885

ABSTRACT

Umbilical cord blood (UCB) transplants in adults have slower hematopoietic recovery compared to bone marrow (BM) or peripheral blood (PB) stem cells mainly due to low number of total nucleated cells and hematopoietic stem and progenitor cells (HSPC). As such in this study, we aimed to perform ex vivo expansion of UCB HSPC from non-enriched mononucleated cells (MNC) using novel azole-based small molecules. Freshly-thawed UCB-MNC were cultured in expansion medium supplemented with small molecules and basal cytokine cocktail. The effects of the expansion protocol were measured based on in vitro and in vivo assays. The proprietary library of >50 small molecules were developed using structure-activity-relationship studies of SB203580, a known p38-MAPK inhibitor. A particular analog, C7, resulted in 1,554.1 ± 27.8-fold increase of absolute viable CD45+ CD34+ CD38- CD45RA- progenitors which was at least 3.7-fold higher than control cultures (p < .001). In depth phenotypic analysis revealed >600-fold expansion of CD34+ /CD90+ /CD49f+ rare HSPCs coupled with significant (p < .01) increase of functional colonies from C7 treated cells. Transplantation of C7 expanded UCB grafts to immunodeficient mice resulted in significantly (p < .001) higher engraftment of human CD45+ and CD45+ CD34+ cells in the PB and BM by day 21 compared to non-expanded and cytokine expanded grafts. The C7 expanded grafts maintained long-term human multilineage chimerism in the BM of primary recipients with sustained human CD45 cell engraftment in secondary recipients. In conclusion, a small molecule, C7, could allow for clinical development of expanded UCB grafts without pre-culture stem cell enrichment that maintains in vitro and in vivo functionality. Stem Cells Translational Medicine 2018;7:376-393.


Subject(s)
Antigens, CD34/metabolism , Azoles/pharmacology , Fetal Blood/drug effects , Hematopoietic Stem Cells/drug effects , Integrin alpha6/metabolism , Stem Cells/drug effects , Thy-1 Antigens/metabolism , Animals , Cells, Cultured , Fetal Blood/metabolism , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Imidazoles/pharmacology , Mice , Mice, SCID , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , Stem Cells/metabolism , Structure-Activity Relationship
11.
Nanomedicine ; 11(7): 1643-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26115640

ABSTRACT

In this study, we report that surface functional groups of single walled carbon nanotubes (f-SWCNT) are critical for mediating survival and ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) in human umbilical cord blood (UCB). In comparison to amide (-O-NH2) and polyethylene-glycol (-PEG) functionalized SWCNT, carboxylic acid (-COOH) variants gave optimal viability support which correlated with maximal reduction of lethal mitochondrial superoxides in HSPC. Cytokine array illustrated that f-SWCNT-COOH maintained higher proportion of HSPC associated cytokines and minimal level of differentiation promoting factors. Transplantation of f-SWCNT-COOH expanded grafts in sub-lethally irradiated immunodeficient mice resulted in higher engraftment of HSPC in bone marrow compared to control when they were co-transplanted with non-expanded cells from the same UCB. Expanded grafts mediated higher survival rate of mice compared to non-expanded grafts due to lower graft-versus-host-disease which is likely a consequence of proportion of immune cells in the grafts. FROM THE CLINICAL EDITOR: Umbilical cord blood (UCB) is a potential source of hematopoietic stem and progenitor (HSPC) cells. One major hurdle for its clinical use is the insufficient yield of cell number. The authors in this study elegantly demonstrated the importance of various functional groups on single-walled carbon nanotubes (f-SWCNT) in enhancing ex vivo expansion of HSPC in UCB. The findings may pave a way for having UCB as a source for HSPC for clinical use in the future.


Subject(s)
Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Nanotubes, Carbon/chemistry , Animals , Cell Differentiation/drug effects , Cytokines/metabolism , Fetal Blood/drug effects , Graft vs Host Disease/pathology , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Nanotubes, Carbon/adverse effects , Superoxides/metabolism , Transplantation, Heterologous
12.
Biol Blood Marrow Transplant ; 21(6): 1008-19, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25555449

ABSTRACT

The successful expansion of hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood (UCB) for transplantation could revolutionize clinical practice by improving transplantation-related outcomes and making available UCB units that have suboptimal cell doses for transplantation. New cytokine combinations appear able to promote HSPC growth with minimal differentiation into mature precursors and new agents, such as insulin-like growth factor-binding protein 2, are being used in clinical trials. Molecules that simulate the HSPC niche, such as Notch ligand, have also shown promise. Further improvements have been made with the use of mesenchymal stromal cells, which have made possible UCB expansion without a potentially deleterious prior CD34/CD133 cell selection step. Chemical molecules, such as copper chelators, nicotinamide, and aryl hydrocarbon antagonists, have shown excellent outcomes in clinical studies. The use of bioreactors could further add to HSPC studies in future. Drugs that could improve HSPC homing also appear to have potential in improving engraftment times in UCB transplantation. Technologies to expand HSPC from UCB and to enhance the homing of these cells appear to have attained the goal of accelerating hematopoietic recovery. Further discoveries and clinical studies are likely to make the goal of true HSPC expansion a reality for many applications in future.


Subject(s)
Hematopoietic Stem Cells/immunology , Mesenchymal Stem Cells/immunology , Stem Cell Niche/immunology , Bioreactors , Cell Proliferation/drug effects , Cells, Cultured , Clinical Trials as Topic , Cord Blood Stem Cell Transplantation , Cytokines/pharmacology , Ethylenediamines/pharmacology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Humans , Insulin-Like Growth Factor Binding Protein 2/pharmacology , Intracellular Signaling Peptides and Proteins/pharmacology , Membrane Proteins/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Niacinamide/pharmacology , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/immunology
13.
Stem Cell Res Ther ; 5(3): 71, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24886724

ABSTRACT

INTRODUCTION: Insulin-like growth factors (IGFs), IGF binding proteins (IGFBPs) and angiopoietin-like proteins (ANGPTLs) can enhance the ex vivo expansion of hematopoietic stem cells (HSCs) when used with a standard cytokine cocktail of stem cell factor (SCF), thrombopoietin (TPO) and FLT3 ligand (FL). In order to determine the optimal dose and combination of IGFs, IGFBPs and ANGPTLs, serial dilution and full permutation of IGFBP1, IGFBP2, IGF2 and ANGPTL3 were applied on a cryopreserved umbilical cord blood mononuclear cell (UCB-MNC) ex vivo expansion system. METHODS: In this system, 4 × 105 cells/ml of UCB-MNCs were inoculated in serum-free Stemspan® medium (Stemcell technologies, vancouver, BC, Canada) supplied with standard basal cytokine combination of 100 ng/ml SCF, 50 ng/ml FL and 100 ng/ml TPO and supported by a bone marrow mesenchymal stromal cell layer. RESULTS: Paradoxically, experiment results showed that the highest expansion of CD34+CD38-CD90+ primitive progenitor was stimulated by cytokine combination of SCF + TPO + FL + IGFBP1 + IGFBP2 + ANGPTL3 at a low dose of 15 ng/ml IGFBP1 and 20 ng/ml IGFBP2 and ANGPTL3. This ex vivo expansion was further validated in 8-week-old to 10-week-old nonobese diabetic/severe combined immunodeficiency interleukin 2 gamma chain null (NOD/SCID-IL2Rγ-/-) mice. Limiting dilution assay showed excellent correlation between the HSC ex vivo surface marker of CD34+CD38-CD90+ and the in vivo competitive repopulating unit (CRU) functional assay. CONCLUSION: IGFBP1, IGFBP2, IGF2 and ANGPTL3 can stimulate the expansion of CD34+CD38-CD90+ primitive progenitor at low dose. The optimal combination comprises IGFBP1, IGFBP2 and ANGPTL3 together with the standard cytokine cocktail of SCF, FL and TPO. The CD34+CD38-CD90+ phenotype can serve as a surrogate ex vivo surface marker for HSCs due to consistency with the in vivo CRU functional assay.


Subject(s)
Angiopoietins/pharmacology , Cell Culture Techniques/methods , Hematopoietic Stem Cells/cytology , Insulin-Like Growth Factor Binding Protein 1/pharmacology , Insulin-Like Growth Factor Binding Protein 2/pharmacology , Insulin-Like Growth Factor II/pharmacology , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins , Animals , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/drug effects , Humans , Mice , Mice, Inbred NOD , Mice, SCID
14.
Nanomedicine ; 9(8): 1304-16, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23732300

ABSTRACT

In this study, carboxylic acid functionalized single walled carbon nanotubes (f-SWCNT-COOH) was shown to support the viability and ex vivo expansion of freeze-thawed, non-enriched hematopoietic stem and progenitor cells (HSPC) in human umbilical cord blood-mononucleated cells (UCB-MNC). Our in vitro experiments showed that f-SWCNT-COOH increased the viability of the CD45(+) cells even without cytokine stimulation. It also reduced mitochondrial superoxides and caspase activity in CD45(+) cells. f-SWCNT-COOH drastically reduced the proportions of CD45(-) cells in the non-enriched UCB-MNC. Phenotypic expression analysis and functional colony forming units (CFU) showed significant ex vivo expansion of HSPC, particularly of CD45(+)CD34(+)CD38(-) population and granulocyte-macrophage (GM) colonies, in f-SWCNT-COOH augmented cultures supplemented with basal cytokines. In vivo data suggested that f-SWCNT-COOH expanded UCB-MNC could repopulate immunodeficient mice models with minimal acute or sub-acute symptoms of graft-versus-host disease (GVHD) and f-SWCNT-COOH dependent toxicity. FROM THE CLINICAL EDITOR: In this paper a novel method is presented by using single wall functionalized carbon nanotubes to enhance viability and ex vivo expansion of freeze-thawed, non-enriched hematopoietic stem and progenitor cells in human umbilical cord blood -mononucleated cells. Detailed data is presented about enhanced viability, including improved repopulation of immunodeficient mice models with minimal acute or sub-acute symptoms of graft-versus-host disease.


Subject(s)
Fetal Blood/cytology , Fetal Blood/transplantation , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/cytology , Nanotubes, Carbon/chemistry , ADP-ribosyl Cyclase 1/analysis , Animals , Antigens, CD34/analysis , Carboxylic Acids/chemistry , Cell Culture Techniques/methods , Cell Survival , Freezing , Graft vs Host Disease/prevention & control , Humans , Leukocyte Common Antigens/analysis , Mice , Mice, SCID
15.
Cytotherapy ; 15(5): 610-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23419678

ABSTRACT

BACKGROUND AIMS: Double cord blood transplantation (DCBT) may shorten neutrophil and platelet recovery times compared with standard umbilical cord blood transplantation. However, DCBT may be associated with a higher incidence of graft versus host disease (GVHD). In this study, we explored the effect of ex vivo expansion of a single cord blood unit (CBU) in a DCBT setting on GVHD and engraftment. METHODS: Post-thaw cryopreserved CBUs from cord blood banks, hereinafter termed "banked" CBUs, were co-cultured with confluent bone marrow mesenchymal stromal cells (MSCs) supplemented with a cytokine cocktail comprising 100 ng/mL stem cell factor, 50 ng/mL flt3-ligand, 100 ng/mL thrombopoietin and 20 ng/mL insulin-like growth factor binding protein 2 for 12 days. RESULTS: When DCBT of one unexpanded and one expanded CBU was performed in non-obese diabetic/severe combined immunodeficient-IL2Rgamma(null) (NOD/SCID-IL2γ(-/-), NSG) mice, the expanded CBU significantly boosted in vivo hematopoiesis of the unexpanded CBU. The median survival of NSG mice was significantly improved from 63.4% (range, 60.0-66.7%) for mice receiving only unexpanded units to 86.5% (range, 80.0-92.9%) for mice receiving an expanded unit (P < 0.001). The difference in survival appeared to be due to a lower incidence of GVHD in the mice receiving expanded cells. This effect on GVHD was mediated by a significant increase in regulatory T cells seen in the presence of MSC co-culture. CONCLUSIONS: MSC-supported ex vivo expansion of "banked" CBU boosted unexpanded CBU hematopoiesis in vivo, increased regulatory T cell content and decreased the incidence of GVHD.


Subject(s)
Bone Marrow Cells/cytology , Fetal Blood/transplantation , Graft vs Host Disease/immunology , Mesenchymal Stem Cells/cytology , T-Lymphocytes, Regulatory/cytology , Animals , Cells, Cultured , Coculture Techniques , Fetal Blood/cytology , Graft vs Host Disease/etiology , Graft vs Host Disease/pathology , Hematopoiesis , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Mice , Transplantation, Heterologous
16.
Cytotherapy ; 14(9): 1064-79, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22775077

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. METHODS: In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). RESULTS: Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P < 0.01). This was associated with significant enhancement of mitochondrial membrane potential (P < 0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P < 0.0001). CONCLUSIONS: Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture.


Subject(s)
Cell Culture Techniques , Cytosol/metabolism , Fetal Blood/cytology , Leukocytes, Mononuclear/cytology , Mesenchymal Stem Cells/cytology , Animals , Cell Death/genetics , Cell Fusion , Cell Proliferation , Cell Survival , Cell Transdifferentiation , Coculture Techniques , Green Fluorescent Proteins/analysis , Humans , Membrane Potential, Mitochondrial , Mice , NIH 3T3 Cells
17.
Biol Blood Marrow Transplant ; 18(5): 674-82, 2012 May.
Article in English | MEDLINE | ID: mdl-22240732

ABSTRACT

Ex vivo expansion of cord blood (CB) hematopoietic stem cells and cotransplantation of 2 CB units (CBUs) could enhance the applicability of CB transplantation in adult patients. We report an immunodeficient mouse model for cotransplantation of ex vivo expanded and unexpanded human CB, showing enhanced CB engraftment and provide proof of concept for this transplantation strategy as a means of overcoming the limiting cell numbers in each CBU. CBUs were expanded in serum-free medium supplemented with stem cell factor, Flt-3 ligand, thrombopoietin, and insulin growth factor binding protein-2 together with mesenchymal stromal cell coculture. Unexpanded and expanded CB cells were cotransplanted by tail vein injection into 45 sublethally irradiated nonobese diabetic SCID-IL2γ(-/-) (NSG) mice. Submandibular bleeding was performed monthly, and mice were sacrificed 4 months after transplantation to analyze for human hematopoietic engraftment. Expansion of non-CD34(+) selected CB cells yielded 40-fold expansion of CD34(+) cells and 3.1-fold expansion of hematopoietic stem cells based on limiting dilution analysis of NSG engraftment. Mice receiving expanded grafts exhibited 4.30% human cell repopulation, compared with 0.92% in mice receiving only unexpanded grafts at equivalent starting cell doses, even though the unexpanded graft predominated in long-term hematopoiesis (P = .07). Ex vivo expanded grafts with lower initiating cell doses also showed equivalent engraftment to unexpanded grafts with higher cell dose (8.0% versus 7.9%; P = .93). In conclusion, ex vivo expansion resulted in enhanced CB engraftment despite eventual rejection by the unexpanded CBU.


Subject(s)
Fetal Blood/transplantation , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/drug effects , Insulin-Like Growth Factor Binding Protein 2/pharmacology , Mesenchymal Stem Cells/drug effects , Animals , Antigens, CD34/biosynthesis , Antigens, CD34/immunology , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Fetal Blood/cytology , Fetal Blood/immunology , Graft Survival/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Injections, Intravenous , Membrane Proteins/pharmacology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mice , Mice, SCID , Stem Cell Factor/pharmacology , Thrombopoietin/pharmacology , Transplantation, Heterologous , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...