Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 89: 102428, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38878657

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion (MI/R) occurs due to temporary or permanent interruptions in the coronary and circulatory system, indirectly affecting kidney function through reduced cardiac output for metabolic needs. In this study, the aim was to explore the indirect effects of using human amniotic membrane mesenchymal stem cells (hAMSCs) with the PGS-co-PCL/PGC/PPy/Gelatin scaffold in male rats with renal failure induced by miocardial ischemia-reperfusion. METHODS: MI/R injury was induced in 48 male Wistar rats through left anterior descending artery ligation, divided into four groups (n=12); control group, cell group, scaffold group, and celss+scaffold group. Evaluations were conducted at two and thirty days post MI/R injury, encompassing echocardiography, biochemical, inflammatory markers analysis, and histological assessment. RESULTS: Echocardiographic findings exhibited notable enhancement in ejection fraction, fractional shortening, and stroke volume of treated groups compared to controls after 30 days (P< 0.05). Serum creatinine (P< 0.001) and urea (P< 0.05) levels significantly decreased in the scaffold+cells group) compared to the control group. The treated cells+ scaffold group displayed improved kidney structure, evidenced by larger glomeruli and reduced Bowman's space compared to the control group (P< 0.01). Immunohistochemical analysis indicated reduced TNF-α protein in the scaffold+ cells group (P< 0.05) in contrast to the control group (P< 0.05). Inflammatory factors IL-6, TNF-α, and AKT gene expression in renal tissues were improved in scaffold+ cells-treated animals. CONCLUSION: Our research proposes the combination of hAMSCs and the PGS-co-PCL/PGC/PPy/Gelatin scaffold in MI/R injured rats appears to enhance renal function and reduce kidney inflammation by improving cardiac output.

2.
Heliyon ; 10(5): e26954, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449629

ABSTRACT

Objective: This study aims to investigate the effect of dentin conditioning by subablative Er:YAG (erbium-doped yttrium aluminium garnet) laser on dental pulp stem cells (DPSCs) viability. Methods: For this in-vitro experimental study, root fragments were longitudinally hemisected after decoronation of single-rooted extracted teeth and preparation of root canals. Prepared samples were randomly assigned to 2 experimental groups (n = 17) as follows; 1) laser conditioning: irradiation with Er:YAG laser beams (2940 nm, 50 mJ per pulse, 20 Hz) 2) Chemical conditioning: 1.5% NaOCl, followed by phosphate-buffered saline (PBS), 17% EDTA, followed by PBS as a final rinse. The samples were ultraviolet-sterilized, and DPSCs were seeded on the samples. MTT assay was performed after 1, 4 and 7 days of incubation to assess the cell viability (n = 5/group per day). Also, after 7 days, two samples of each group underwent SEM (scanning electron microscope) analysis. Statistical analysis was done using independent t-test, one-way ANOVA and two-way ANOVA at a significance level of 0.05. Results: Laser irradiated samples exhibited significantly higher cell viability of DPSCs on days 4 (p < 0.0001) and 7 (p < 0.0001), unlike day 1 (p = 0.131). SEM photomicrographs revealed that Er:YAG laser performed much better smear layer removal and created surface irregularities. Several different cell morphologies were observable on the laser-treated samples, which cells with cytoplasmic extensions being the most frequent. Conclusions: Dentin conditioning by Er:YAG laser enhances DPSCs viability and can be a valuable modality for conditioning dentin to perform regenerative endodontic procedures. Further clinical studies are suggested.

3.
Iran J Pharm Res ; 22(1): e135501, 2023.
Article in English | MEDLINE | ID: mdl-38116556

ABSTRACT

Background: Expression of the miR-34 family, including miR-34a/b/c, has been reported to inhibit the progression of several cancer types by inhibiting cell proliferation and inducing apoptosis. Objectives: We attempted to investigate the effect of SW480 cell transfection with miR-34c-5p mimics on cell proliferation. Methods: To do this, SW480 colon cancer cell line was transfected with miR-34c-5p mimics, scramble sequence, and the vehicle in PBS mock, and then cell proliferation was assessed by MTT assay. The population of cells in cell cycle phases, ROS generation, and apoptosis rate were evaluated by flow cytometry. Additionally, we determined the relative expression of apoptotic genes through real-time PCR technique. Results: We observed a reduced proliferation rate in cells transfected with miR-34c-5p compared to the control group (P <0.05). We also found that miR-34c-5p caused a significant increase in apoptosis rate (P < 0.001) and cell cycle arrest in the G0 and G1 phases (P < 0.05). Moreover, a significant increase was reported in the expression of pro-apoptotic genes, including BAK (P < 0.001), BAX and BAD (P < 0.0001), and Caspase 7/9 (P < 0.0001). Conclusions: However, no remarkable difference was seen in the expression of MCL1, BCL2, and CASPASE 3 genes. Our conclusion is that overexpression of miR-34c-5p could be considered a promising approach for colorectal cancer treatment.

4.
Dent Res J (Isfahan) ; 20: 91, 2023.
Article in English | MEDLINE | ID: mdl-37810454

ABSTRACT

Background: Shock wave-enhanced emission photoacoustic streaming (SWEEPS) is a novel irrigation activation method based on photoacoustic streaming. The aim of this study was to look into the impact of SWEEPS on the attachment and survival of dental pulp stem cells (DPSCs). Materials and Methods: In this in vitro study, 34 standardized root segments were randomly allocated into two groups: SWEEPS and the conventional conditioning group. After the irrigation, human DPSCs were seeded on the internal walls of these samples, and the attachment and survival of 30 of them were assessed on different days. The remaining two samples were observed using a scanning electron microscope (SEM). Independent sample t-test, Mann-Whitney U-test, one-way ANOVA, Kruskal-Wallis, and two-way ANOVA were used for data analysis with the level of significance = 0.05. Results: The viability of DPSCs was significantly greater in the SWEEPS group in comparison with the conventional conditioning group (P = 0.029). Both groups have shown a significant increase in the viability of DPSCs over time (P = 0.0001, P = 0.003). SEM results have shown a smear layer-free surface with firmly attached DPSCs in the SWEEPS group. Conclusion: The results of this study indicated that active irrigation using SWEEPS could provide a superior surface in terms of viability and attachment of DPSCs compared to the conventional conditioning method.

5.
Appl Biochem Biotechnol ; 195(12): 7502-7519, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37010740

ABSTRACT

According to the World Health Organization (WHO), about 3.9 million people die annually of ischemic heart disease (IHD). Several clinical trials have shown that stem cell therapy is a promising therapeutic approach to IHD. Human amniotic membrane mesenchymal stem cells (hAMSCs) positively affect the repair of myocardial ischemia-reperfusion (MI/R) injury by stimulating endogenous repair mechanisms. The differentiated hAMSCs with and without modified PGS-co-PCL film were applied in the myocardium. MI/R injury was induced by ligating the left anterior descending artery in 48 male Wistar rats. The rats were divided into four groups, (n = 12) animals: heart failure (HF) as the control group, HF + MSCs, HF + MSCs + film, and HF + film. Echocardiography was performed 2 and 4 weeks after MI/R injury moreover the expression of the VEGF protein was assessed in the rat heart tissue via immunohistochemistry. In vitro, our result shows fantastic cell survival when seeded on film. In vivo, the left ventricle ejection fraction (LEVD), fractional shortening (FS), end-diastolic (EDV), and stroke volume (SV) have been increased and systolic volumes decreased in all treatment groups in comparison with control. Although combination therapy has a more positive effect on hemodynamic parameters, there is no significant difference between HF + MSCs + film with other treatment groups. Also, In the IHC assay, expression of the VEGF protein significantly increased in all intervention groups. The implantation of MSCs and the modified film significantly enhanced the cardiac functional outcome; in this regard, enhancement in cell survival and VEGF expression are involved as underlying mechanisms in which cardiac film and MSCs exert a beneficial effect.


Subject(s)
Mesenchymal Stem Cells , Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Rats , Male , Animals , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/therapy , Vascular Endothelial Growth Factor A , Amnion , Rats, Wistar , Myocardium/metabolism , Immunologic Factors , Mesenchymal Stem Cells/metabolism , Models, Theoretical , Disease Models, Animal
6.
Pathol Res Pract ; 227: 153645, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34678601

ABSTRACT

Breast cancer is the most common form of cancer in women around the world. The molecular mechanisms of this heterogeneous disease have been extensively investigated; but yet; It requires a lot of sensitive and specific markers for prognosis and early detection approaches. Non-protein coding RNAs known as lncRNAs have been reported in tumorigenic involvement so they can be used for therapeutic purposes. In the present study, the expression levels of CCAT1, PDCD4, PDCD4-AS1, and MEG3 LncRNA in adjacent tumor and breast tissue in 88 Iranian patients were evaluated by quantitative real-time PCR. CCAT1 was significantly expressed and PDCD4-AS1 decreased in tumor samples, PDCD4 and PDCD4-AS1 showed a positive correlation with each other, higher levels of PDCD4-AS1 were associated with better survival, tumor samples showed lower levels of PDCD4 in Showed comparisons with normal tissue. Our findings suggest that lncRNAs play an important role in controlling gene expression after transcription of major tumor suppressors or carcinogenic genes, leading to the development of triple-negative breast cancer (TNBC). In conclusion, this study investigated the prognostic role of lncRNA in breast cancer patients.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Adult , Aged , Apoptosis Regulatory Proteins/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism
7.
Sci Rep ; 9(1): 4336, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867501

ABSTRACT

Varicocele, defined as enlarged varicose veins in the scrotum, is the most common identifiable cause of male infertility. There are significant correlations between oxidative stress and varicocele-related infertility due to testicular hyperthermia, which can result in low sperm function. In addition, recent excessive oxidative stress can affect sperm telomere length and integrity of sperm DNA. Therefore, we assessed sperm telomere length as a potential marker of paternal genome integrity and leukocyte telomere length as an internal control (real-time PCR), along with sperm chromatin status (TUNEL and chromomycin A3 assay), and lipid peroxidation (Bodipy probe) in 18 infertile men with grade II or III varicocele, and 20 fertile men. Means of sperm parameters, sperm and leukocyte telomere length were significantly lower, while means of sperm DNA fragmentation, protamine deficiency, and lipid peroxidation were significantly higher in infertile men with varicocele compared to fertile men. Therefore, shortened telomere length in sperm and leukocytes is likely associated with increased oxidative stress related to the state of varicocele, which also accounts for increase in sperm DNA fragmentation. Thus, assessment of leukocyte telomere length could be taken as an indicator of antioxidant capacity in an individual, which also affects sperm function.


Subject(s)
Spermatozoa/ultrastructure , Telomere Shortening , Varicocele/genetics , Adult , DNA/metabolism , Humans , Infertility, Male/genetics , Lipid Peroxidation , Male , Protamines/metabolism , Spermatozoa/metabolism
8.
Int J Biol Macromol ; 118(Pt A): 800-807, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29959020

ABSTRACT

Silica nanoparticles (SiO2 NPs) have been widely used in the medical and food sciences. However, their toxic effects against bio-macromolecules and cells are not well understood. The present study was aimed to investigate the adverse effects of fabricated SiO2 NPs on the human hemoglobin (Hb) by FTIR, CD, fluorescence, and UV-vis spectroscopic techniques. Moreover, the toxic effects of SiO2 NPs on the human lymphocyte cell was assessed by trypan blue, reactivate oxygen species (ROS), and apoptosis assays. It was shown that synthesized SiO2 NPs have an amorphous structure with dominant size of around 20-30 nm. FTIR results showed that SiO2 NPs bind to Hb and induce significant structural changes on the native structure of Hb. Near CD spectroscopy depicted that SiO2 NPs induced tertiary structural changes and heme displacement. Fluorescence spectroscopy demonstrated the production of heme degradation species in the Hb solution after interaction with SiO2 NPs. UV-vis spectroscopy experiment indicated the release of iron form Hb after interaction with SiO2 NPs in a concentration dependent manner. Live-dead staining, ROS detection and flow cytometry analysis revealed that human lymphocyte was sensitive towards the toxicity of SiO2 NPs in a ROS-mediated apoptosis mechanism. In conclusion, SiO2 NPs exhibited concentration-dependent toxicity.


Subject(s)
Heme/metabolism , Hemoglobins/metabolism , Iron/metabolism , Lymphocytes/metabolism , Nanoparticles/chemistry , Oxidative Stress/drug effects , Silicon Dioxide , Humans , Lymphocytes/cytology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...