Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 9(3): 591-592, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38443573
2.
Nucleic Acids Res ; 49(22): 13150-13164, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34850144

ABSTRACT

Genome segregation is a vital process in all organisms. Chromosome partitioning remains obscure in Archaea, the third domain of life. Here, we investigated the SegAB system from Sulfolobus solfataricus. SegA is a ParA Walker-type ATPase and SegB is a site-specific DNA-binding protein. We determined the structures of both proteins and those of SegA-DNA and SegB-DNA complexes. The SegA structure revealed an atypical, novel non-sandwich dimer that binds DNA either in the presence or in the absence of ATP. The SegB structure disclosed a ribbon-helix-helix motif through which the protein binds DNA site specifically. The association of multiple interacting SegB dimers with the DNA results in a higher order chromatin-like structure. The unstructured SegB N-terminus plays an essential catalytic role in stimulating SegA ATPase activity and an architectural regulatory role in segrosome (SegA-SegB-DNA) formation. Electron microscopy results also provide a compact ring-like segrosome structure related to chromosome organization. These findings contribute a novel mechanistic perspective on archaeal chromosome segregation.


Subject(s)
Archaeal Proteins/genetics , Chromosome Segregation , Chromosomes, Archaeal/genetics , DNA, Archaeal/genetics , Sulfolobus solfataricus/genetics , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Crystallography, X-Ray , DNA, Archaeal/chemistry , DNA, Archaeal/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Microscopy, Electron , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Sulfolobus solfataricus/metabolism
3.
Front Mol Biosci ; 7: 108, 2020.
Article in English | MEDLINE | ID: mdl-32613008

ABSTRACT

The molecular events that underpin genome segregation during bacterial cytokinesis have not been fully described. The tripartite segrosome complex that is encoded by the multiresistance plasmid TP228 in Escherichia coli is a tractable model to decipher the steps that mediate accurate genome partitioning in bacteria. In this case, a "Venus flytrap" mechanism mediates plasmid segregation. The ParG sequence-specific DNA binding protein coats the parH centromere. ParF, a ParA-type ATPase protein, assembles in a three-dimensional meshwork that penetrates the nucleoid volume where it recognizes and transports ParG-parH complexes and attached plasmids to the nucleoid poles. Plasmids are deposited at the nucleoid poles following the partial dissolution of the ParF network through a combination of localized ATP hydrolysis within the meshwork and ParG-mediated oligomer disassembly. The current study demonstrates that the conformation of the nucleotide binding pocket in ParF is tuned exquisitely: a single amino acid change that perturbs the molecular arrangement of the bound nucleotide moderates ATP hydrolysis. Moreover, this alteration also affects critical interactions of ParF with the partner protein ParG. As a result, plasmid segregation is inhibited. The data reinforce that the dynamics of nucleotide binding and hydrolysis by ParA-type proteins are key to accurate genome segregation in bacteria.

4.
Bioessays ; 40(2)2018 02.
Article in English | MEDLINE | ID: mdl-29226983

ABSTRACT

Genome maintenance requires various nucleoid-associated factors in prokaryotes. Among them, the SMC (Structural Maintenance of Chromosomes) protein has been thought to play a static role in the organization and segregation of the chromosome during cell division. However, recent studies have shown that the bacterial SMC is required to align left and right arms of the emerging chromosome and that the protein dynamically travels from origin to Ter region. A rod form of the SMC complex mediates DNA bridging and has been recognized as a machinery responsible for DNA loop extrusion, like eukaryotic condensin or cohesin complexes, which act as chromosome organizers. Attention is now turning to how the prototype of the complex is loaded on the entry site and translocated on chromosomal DNA, explaining its overall conformational changes at atomic levels. Here, we review and highlight recent findings concerning the prokaryotic SMC complex and discuss possible mechanisms from the viewpoint of protein architecture.


Subject(s)
Bacterial Proteins/physiology , Cell Cycle Proteins/physiology , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Bacillus subtilis/genetics , Cell Division , Escherichia coli/genetics
5.
Nucleic Acids Res ; 45(6): 3158-3171, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28034957

ABSTRACT

Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Plasmids/physiology , 1-Acylglycerol-3-Phosphate O-Acyltransferase/chemistry , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , DNA/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/analysis , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Microscopy, Fluorescence , Mutation , Plasmids/genetics , Repressor Proteins/analysis , Repressor Proteins/genetics , Time-Lapse Imaging
6.
Trends Microbiol ; 24(12): 957-967, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27450111

ABSTRACT

Genome segregation is a fundamental biological process in organisms from all domains of life. How this stage of the cell cycle unfolds in Eukarya has been clearly defined and considerable progress has been made to unravel chromosome partition in Bacteria. The picture is still elusive in Archaea. The lineages of this domain exhibit different cell-cycle lifestyles and wide-ranging chromosome copy numbers, fluctuating from 1 up to 55. This plurality of patterns suggests that a variety of mechanisms might underpin disentangling and delivery of DNA molecules to daughter cells. Here I describe recent developments in archaeal genome maintenance, including investigations of novel genome segregation machines that point to unforeseen bacterial and eukaryotic connections.


Subject(s)
Archaea/genetics , Archaeal Proteins/genetics , Genome, Archaeal , Bacteria/genetics , Cell Cycle/genetics , Conserved Sequence , DNA/genetics , DNA/metabolism , DNA Replication , Eukaryotic Cells , Plasmids/genetics
7.
J Mass Spectrom ; 50(12): 1420-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26634977

ABSTRACT

Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments.


Subject(s)
Archaea/chemistry , Diglycerides/chemistry , Terpenes/chemistry , Chromatography, Liquid , Methylation , Tandem Mass Spectrometry
8.
Science ; 349(6252): 1120-4, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26339031

ABSTRACT

Although recent studies have provided a wealth of information about archaeal biology, nothing is known about the molecular basis of DNA segregation in these organisms. Here, we unveil the machinery and assembly mechanism of the archaeal Sulfolobus pNOB8 partition system. This system uses three proteins: ParA; an atypical ParB adaptor; and a centromere-binding component, AspA. AspA utilizes a spreading mechanism to create a DNA superhelix onto which ParB assembles. This supercomplex links to the ParA motor, which contains a bacteria-like Walker motif. The C domain of ParB harbors structural similarity to CenpA, which dictates eukaryotic segregation. Thus, this archaeal system combines bacteria-like and eukarya-like components, which suggests the possible conservation of DNA segregation principles across the three domains of life.


Subject(s)
Archaeal Proteins/chemistry , Centromere/chemistry , Chromosome Segregation , Chromosomes, Archaeal/genetics , DNA, Archaeal/genetics , Sulfolobus/genetics , Amino Acid Motifs , Archaeal Proteins/genetics , Autoantigens/chemistry , Autoantigens/genetics , Bacteria/genetics , Centromere/genetics , Centromere Protein A , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation/genetics , DNA, Archaeal/chemistry , DNA, Superhelical/chemistry , DNA, Superhelical/genetics , Kluyveromyces/genetics , Nucleic Acid Conformation , Protein Structure, Tertiary
9.
J Biol Chem ; 287(51): 42545-53, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23093445

ABSTRACT

DNA segregation in bacteria is mediated most frequently by proteins of the ParA superfamily that transport DNA molecules attached via the segrosome nucleoprotein complex. Segregation is governed by a cycle of ATP-induced polymerization and subsequent depolymerization of the ParA factor. Here, we establish that hyperactive ATPase variants of the ParA homolog ParF display altered segrosome dynamics that block accurate DNA segregation. An arginine finger-like motif in the ParG centromere-binding factor augments ParF ATPase activity but is ineffective in stimulating nucleotide hydrolysis by the hyperactive proteins. Moreover, whereas polymerization of wild-type ParF is accelerated by ATP and inhibited by ADP, filamentation of the mutated proteins is blocked indiscriminately by nucleotides. The mutations affect a triplet of conserved residues that are situated neither in canonical nucleotide binding and hydrolysis motifs in the ParF tertiary structure nor at interfaces implicated in ParF polymerization. Instead the residues are involved in shaping the contours of the binding pocket so that nucleotide binding locks the mutant proteins into a configuration that is refractory to polymerization. Thus, the architecture of the pocket not only is crucial for optimal ATPase kinetics but also plays a key role in the polymerization dynamics of ParA proteins that drive DNA segregation ubiquitously in procaryotes.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , DNA, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Multigene Family , Nucleotides/metabolism , Polymerization , 1-Acylglycerol-3-Phosphate O-Acyltransferase/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Amino Acid Sequence , Arginine/metabolism , Binding Sites , Chromosome Segregation , Conserved Sequence , Crystallography, X-Ray , Escherichia coli Proteins/chemistry , Fluorescence Polarization , Hydrolysis , Kinetics , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding
10.
J Biol Chem ; 287(31): 26146-54, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22674577

ABSTRACT

Segregation of the bacterial multidrug resistance plasmid TP228 requires the centromere-binding protein ParG, the parH centromere, and the Walker box ATPase ParF. The cycling of ParF between ADP- and ATP-bound states drives TP228 partition; ATP binding stimulates ParF polymerization, which is essential for segregation, whereas ADP binding antagonizes polymerization and inhibits DNA partition. The molecular mechanism involved in this adenine nucleotide switch is unclear. Moreover, it is unknown how any Walker box protein polymerizes in an ATP-dependent manner. Here, we describe multiple ParF structures in ADP- and phosphomethylphosphonic acid adenylate ester (AMPPCP)-bound states. ParF-ADP is monomeric but dimerizes when complexed with AMPPCP. Strikingly, in ParF-AMPPCP structures, the dimers interact to create dimer-of-dimer "units" that generate a specific linear filament. Mutation of interface residues prevents both polymerization and DNA segregation in vivo. Thus, these data provide insight into a unique mechanism by which a Walker box protein forms polymers that involves the generation of ATP-induced dimer-of-dimer building blocks.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Plasmids/physiology , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Conserved Sequence , Crystallography, X-Ray , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Fluorescence Polarization , Molecular Sequence Data , Plasmids/genetics , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary
11.
Proc Natl Acad Sci U S A ; 109(10): 3754-9, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22355141

ABSTRACT

Eukarya and, more recently, some bacteria have been shown to rely on a cytoskeleton-based apparatus to drive chromosome segregation. In contrast, the factors and mechanisms underpinning this fundamental process are underexplored in archaea, the third domain of life. Here we establish that the archaeon Sulfolobus solfataricus harbors a hybrid segrosome consisting of two interacting proteins, SegA and SegB, that play a key role in genome segregation in this organism. SegA is an ortholog of bacterial, Walker-type ParA proteins, whereas SegB is an archaea-specific factor lacking sequence identity to either eukaryotic or bacterial proteins, but sharing homology with a cluster of uncharacterized factors conserved in both crenarchaea and euryarchaea, the two major archaeal sub-phyla. We show that SegA is an ATPase that polymerizes in vitro and that SegB is a site-specific DNA-binding protein contacting palindromic sequences located upstream of the segAB cassette. SegB interacts with SegA in the presence of nucleotides and dramatically affects its polymerization dynamics. Our data demonstrate that SegB strongly stimulates SegA polymerization, possibly by promoting SegA nucleation and accelerating polymer growth. Increased expression levels of segAB resulted in severe growth and chromosome segregation defects, including formation of anucleate cells, compact nucleoids confined to one half of the cell compartment and fragmented nucleoids. The overall picture emerging from our findings indicates that the SegAB complex fulfills a crucial function in chromosome segregation and is the prototype of a DNA partition machine widespread across archaea.


Subject(s)
Adenosine Triphosphatases/physiology , Archaea/genetics , Archaeal Proteins/physiology , Chromosomes/ultrastructure , DNA-Binding Proteins/physiology , DNA/genetics , Sulfolobus solfataricus/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Motifs , Archaeal Proteins/genetics , Binding Sites , Biotinylation , Cluster Analysis , Conserved Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Gene Expression Regulation , Genes, Archaeal , Genome, Archaeal , Protein Structure, Secondary
13.
J Bacteriol ; 191(12): 3832-41, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19376860

ABSTRACT

The segrosome is the nucleoprotein complex that mediates accurate plasmid segregation. In addition to its multifunctional role in segrosome assembly, the ParG protein of multiresistance plasmid TP228 is a transcriptional repressor of the parFG partition genes. ParG is a homodimeric DNA binding protein, with C-terminal regions that interlock into a ribbon-helix-helix fold. Antiparallel beta-strands in this fold are presumed to insert into the O(F) operator major groove to exert transcriptional control as established for other ribbon-helix-helix factors. The O(F) locus comprises eight degenerate tetramer boxes arranged in a combination of direct and inverted orientation. Each tetramer motif likely recruits one ParG dimer, implying that the fully bound operator is cooperatively coated by up to eight dimers. O(F) was subdivided experimentally into four overlapping 20-bp sites (A to D), each of which comprises two tetramer boxes separated by AT-rich spacers. Extensive interaction studies demonstrated that sites A to D individually are bound with different affinities by ParG (C > A approximately B >> D). Moreover, comprehensive scanning mutagenesis revealed the contribution of each position in the site core and flanking sequences to ParG binding. Natural variations in the tetramer box motifs and in the interbox spacers, as well as in flanking sequences, each influence ParG binding. The O(F) operator apparently has evolved with sites that bind ParG dissimilarly to produce a nucleoprotein complex fine-tuned for optimal interaction with the transcription machinery. The association of other ribbon-helix-helix proteins with complex recognition sites similarly may be modulated by natural sequence variations between subsites.


Subject(s)
DNA, Bacterial/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Plasmids/genetics , Repressor Proteins/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Base Sequence , Binding Sites , DNA, Bacterial/chemistry , Escherichia coli/chemistry , Escherichia coli/cytology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Molecular Sequence Data , Mutation , Operator Regions, Genetic , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Alignment
14.
Proc Natl Acad Sci U S A ; 105(6): 2151-6, 2008 Feb 12.
Article in English | MEDLINE | ID: mdl-18245388

ABSTRACT

Multidrug-resistant variants of the opportunistic human pathogen Enterococcus have recently emerged as leading agents of nosocomial infection. The acquisition of plasmid-borne resistance genes is a driving force in antibiotic-resistance evolution in enterococci. The segregation locus of a high-level gentamicin-resistance plasmid, pGENT, in Enterococcus faecium was identified and dissected. This locus includes overlapping genes encoding PrgP, a member of the ParA superfamily of segregation proteins, and PrgO, a site-specific DNA binding homodimer that recognizes the cenE centromere upstream of prgPO. The centromere has a distinctive organization comprising three subsites, CESII separates CESI and CESIII, each of which harbors seven TATA boxes spaced by half-helical turns. PrgO independently binds both CESI and CESIII, but with different affinities. The topography of the complex was probed by atomic force microscopy, revealing discrete PrgO foci positioned asymmetrically at the CESI and CESIII subsites. Bending analysis demonstrated that cenE is intrinsically curved. The organization of the cenE site and of certain other plasmid centromeres mirrors that of yeast centromeres, which may reflect a common architectural requirement during assembly of the mitotic apparatus in yeast and bacteria. Moreover, segregation modules homologous to that of pGENT are widely disseminated on vancomycin and other resistance plasmids in enterococci. An improved understanding of segrosome assembly may highlight new interventions geared toward combating antibiotic resistance in these insidious pathogens.


Subject(s)
Centromere , Drug Resistance, Microbial/genetics , Drug Resistance, Multiple/genetics , Enterococcus faecium/genetics , Genes, Bacterial , Molecular Sequence Data
15.
J Mol Biol ; 374(1): 1-8, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-17920627

ABSTRACT

The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/chemistry , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adenosine Triphosphate/metabolism , Centromere/metabolism , Escherichia coli Proteins/metabolism , Adenosine Triphosphate/chemistry , DNA, Bacterial/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Polymers
16.
Proc Natl Acad Sci U S A ; 104(6): 1811-6, 2007 Feb 06.
Article in English | MEDLINE | ID: mdl-17261809

ABSTRACT

The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon-helix-helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF approximately 30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal DeltaParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adenosine Triphosphate/metabolism , Arginine/physiology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/physiology , Repressor Proteins/physiology , 1-Acylglycerol-3-Phosphate O-Acyltransferase/chemistry , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Amino Acid Sequence , Arginine/chemistry , DNA, Bacterial/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Molecular Sequence Data , Repressor Proteins/chemistry
17.
Trends Biochem Sci ; 31(5): 247-50, 2006 May.
Article in English | MEDLINE | ID: mdl-16584885

ABSTRACT

Genome segregation in prokaryotes is a highly ordered process that integrates with DNA replication, cytokinesis and other fundamental facets of the bacterial cell cycle. The segrosome is the nucleoprotein complex that mediates DNA segregation in bacteria, its assembly and organization is best understood for plasmid partition. The recent elucidation of structures of the ParB plasmid segregation protein bound to centromeric DNA, and of the tertiary structures of other segregation proteins, are key milestones in the path to deciphering the molecular basis of bacterial DNA segregation.


Subject(s)
Chromosome Segregation , Chromosomes, Bacterial , DNA, Bacterial , Genes, Bacterial , Nucleoproteins/physiology , Centromere , Forecasting , Models, Genetic , Nucleoproteins/genetics , Nucleoproteins/metabolism , Plasmids
18.
Nat Rev Microbiol ; 4(2): 133-43, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16415929

ABSTRACT

The genomes of unicellular and multicellular organisms must be partitioned equitably in coordination with cytokinesis to ensure faithful transmission of duplicated genetic material to daughter cells. Bacteria use sophisticated molecular mechanisms to guarantee accurate segregation of both plasmids and chromosomes at cell division. Plasmid segregation is most commonly mediated by a Walker-type ATPase and one of many DNA-binding proteins that assemble on a cis-acting centromere to form a nucleoprotein complex (the segrosome) that mediates intracellular plasmid transport. Bacterial chromosome segregation involves a multipartite strategy in which several discrete protein complexes potentially participate. Shedding light on the basis of genome segregation in bacteria could indicate new strategies aimed at combating pathogenic and antibiotic-resistant bacteria.


Subject(s)
Bacteria/genetics , Bacterial Proteins/physiology , Genome, Bacterial , Nucleoproteins/physiology , Amino Acid Sequence , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Molecular Sequence Data , Nucleoproteins/genetics , Nucleoproteins/metabolism , Sequence Alignment
19.
J Biol Chem ; 280(31): 28683-91, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-15951570

ABSTRACT

ParG is the prototype of a group of small (<10 kDa) proteins involved in accurate plasmid segregation. The protein is a dimeric DNA binding factor, which consists of symmetric paired C-terminal domains that interleave into a ribbon-helix-helix fold that is crucial for the interaction with DNA, and unstructured N-terminal domains of previously unknown function. Here the ParG protein is shown to be a transcriptional repressor of the parFG genes. The protein assembles on its operator site initially as a tetramer (dimer of dimers) and, at elevated protein concentrations, as a pair of tetramers. Progressive deletion of the mobile N-terminal tails concomitantly decreased transcriptional repression by ParG and perturbed the DNA binding kinetics of the protein. The flexible tails are not necessary for ParG dimerization but instead modulate the organization of a higher order nucleoprotein complex that is crucial for proper transcriptional repression. This is achieved by transient associations between the flexible and folded domains in complex with the target DNA. Numerous ParG homologs encoded by plasmids of Gram-negative bacteria similarly are predicted to possess N-terminal disordered tails, suggesting that this is a common feature of partition operon autoregulation. The results provide new insights into the role of natively unfolded domains in protein function, the molecular mechanisms of transcription regulation, and the control of plasmid segregation.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Plasmids/genetics , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription, Genetic , Base Sequence , DNA Mutational Analysis , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Kinetics , Molecular Sequence Data , Promoter Regions, Genetic
20.
J Bacteriol ; 187(8): 2651-61, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15805511

ABSTRACT

The ParG segregation protein (8.6 kDa) of multidrug resistance plasmid TP228 is a homodimeric DNA-binding factor. The ParG dimer consists of intertwined C-terminal domains that adopt a ribbon-helix-helix architecture and a pair of flexible, unstructured N-terminal tails. A variety of plasmids possess partition loci with similar organizations to that of TP228, but instead of ParG homologs, these plasmids specify a diversity of unrelated, but similarly sized, partition proteins. These include the proteobacterial pTAR, pVT745, and pB171 plasmids. The ParG analogs of these plasmids were characterized in parallel with the ParG homolog encoded by the pseudomonal plasmid pVS1. Like ParG, the four proteins are dimeric. No heterodimerization was detectable in vivo among the proteins nor with the prototypical ParG protein, suggesting that monomer-monomer interactions are specific among the five proteins. Nevertheless, as with ParG, the ParG analogs all possess significant amounts of unordered amino acid residues, potentially highlighting a common structural link among the proteins. Furthermore, the ParG analogs bind specifically to the DNA regions located upstream of their homologous parF-like genes. These nucleoprotein interactions are largely restricted to cognate protein-DNA pairs. The results reveal that the partition complexes of these and related plasmids have recruited disparate DNA-binding factors that provide a layer of specificity to the macromolecular interactions that mediate plasmid segregation.


Subject(s)
Bacterial Proteins/metabolism , Plasmids/metabolism , Bacterial Proteins/genetics , Plasmids/genetics , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...