Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(44): 25308-25316, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34747432

ABSTRACT

The photochemistry of metal-organic compounds in solution is determined by both intra- and inter-molecular relaxation processes after photoexcitation. Understanding its prime mechanisms is crucial to optimise the reactive paths and control their outcome. Here we investigate the photoinduced dynamics of aqueous ferrioxalate ([FeIII(C2O4)3]3-) upon 263 nm excitation using ultrafast liquid phase photoelectron spectroscopy (PES). The initial step is found to be a ligand-to-metal electron transfer, occuring on a time scale faster than our time resolution (≲30 fs). Furthermore, we observe that about 25% of the initially formed ferrous species population are lost in ∼2 ps. Cast in the contest of previous ultrafast infrared and X-ray spectroscopic studies, we suggest that upon prompt photoreduction of the metal centre, the excited molecules dissociate in <140 fs into the pair of CO2 and [(CO2)FeII(C2O4)2]3- fragments, with unity quantum yield. About 25% of these pairs geminately recombine in ∼2 ps, due to interaction with the solvent molecules, reforming the ground state of the parent ferric molecule.

2.
Phys Rev Lett ; 124(20): 206402, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32501104

ABSTRACT

Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with outstanding transport properties which are not yet fully understood. We find signatures of large polaron formation in the electronic structure of the inorganic LHP CsPbBr_{3} by means of angle-resolved photoelectron spectroscopy. The experimental valence band dispersion shows a hole effective mass of 0.26±0.02 m_{e}, 50% heavier than the bare mass m_{0}=0.17 m_{e} predicted by density functional theory. Calculations of the electron-phonon coupling indicate that phonon dressing of the carriers mainly occurs via distortions of the Pb-Br bond with a Fröhlich coupling parameter α=1.81. A good agreement with our experimental data is obtained within the Feynman polaron model, validating a viable theoretical method to predict the carrier effective mass of LHPs ab initio.

3.
J Chem Phys ; 147(1): 013929, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28688435

ABSTRACT

The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.

4.
Nat Commun ; 8: 15461, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28580940

ABSTRACT

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

5.
Opt Lett ; 41(18): 4218-21, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27628361

ABSTRACT

We report, to the best of our knowledge, the first application of time-domain ptychography for the characterization of few-cycle laser pulses. Our method enables zero-additional phase measurements of over-octave-spanning laser pulses in the single cycle regime. The spectral phase is recovered using a robust ptychography algorithm that requires no input apart from the measured data trace. In addition to numerical tests, we validate our new device experimentally by reconstructing the complex electric field of a 1.5 cycle laser pulse with a bandwidth spanning 490 to 1060 nm. We further check the accuracy of our device by comparing the measured phases of octave-spanning chirped pulses to the known dispersion of fused silica glass.

6.
Opt Lett ; 41(10): 2382-5, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27177008

ABSTRACT

We report on the characterization of space-time couplings in high-energy sub-2-cycle 770 nm laser pulses using a self-referencing single-frame method. Using spatially encoded arrangement filter-based spectral phase interferometry for direct electric field reconstruction, we characterize few-cycle pulses with a wavefront rotation of 2.8×1011 rev/s (1.38 mrad per half-cycle) and pulses with pulse front tilts ranging from -0.33 fs/µm to -3.03 fs/µm in the focus.

7.
Nat Commun ; 6: 7909, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26268456

ABSTRACT

Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10(-15) s) and even attosecond (as) (1 as=10(-18) s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation.

8.
Phys Rev Lett ; 110(18): 183001, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683194

ABSTRACT

In the 1980s Demkov, Kondratovich, and Ostrovsky and Kondratovich and Ostrovsky proposed an experiment based on the projection of slow electrons emitted by a photoionized atom onto a position-sensitive detector. In the case of resonant excitation, they predicted that the spatial electron distribution on the detector should represent nothing else but a magnified image of the projection of a quasibound electronic state. By exciting lithium atoms in the presence of a static electric field, we present in this Letter the first experimental photoionization wave function microscopy images where signatures of quasibound states are evident. Characteristic resonant features, such as (i) the abrupt change of the number of wave function nodes across a resonance and (ii) the broadening of the outer ring of the image (associated with tunneling ionization), are observed and interpreted via wave packet propagation simulations and recently proposed resonance tunneling mechanisms. The electron spatial distribution measured by our microscope is a direct macroscopic image of the projection of the microscopic squared modulus of the electron wave that is quasibound to the atom and constitutes the first experimental realization of the experiment proposed 30 years ago.

9.
Analyst ; 137(15): 3496-501, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22708119

ABSTRACT

We present a new compact and versatile experimental set-up that has been designed to perform electron and ion imaging experiments on large multiply charged gas phase molecular and cluster species. It combines an electrospray ionization source, a quadrupole mass filter guiding ion optics and a velocity map imaging spectrometer. Characterization of the spectrometer has been performed on atomic ions. Results obtained on molecular species (stilbene 420 dianions) demonstrate the possibility offered by this experimental set-up.

SELECTION OF CITATIONS
SEARCH DETAIL
...