Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(70): e202201875, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36129399

ABSTRACT

Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.


Subject(s)
Ferric Compounds , Iron , Ferric Compounds/chemistry , Models, Molecular , Catalysis , Iron/chemistry , Ferrous Compounds/chemistry
2.
ACS Omega ; 7(8): 6510-6517, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252647

ABSTRACT

In the growing field of single-molecule mechanochromism, the potential of transition metal complexes is yet to be examined. In this work, we have synthesized a series of [Cu(phen)2]+ complexes: bis-Cu(I)-phenanthroline, bis-Cu(I)-phenanthroline-2-amine, and bis-Cu(I)-phenanthroline-2-acetamide. After that, we characterized the complexes by UV-vis spectroscopy and employed density functional theory (DFT) calculations to investigate the changes in UV-vis upon mechanical pulling via force calculations. The results of our examination of time-dependent (TD)-DFT-calculated UV-vis suggests that the bis-Cu(I)-phenanthroline-2-acetamide complex is predicted to have an observable shift of the metal-to-ligand charge transfer band upon pulling from 0 to 0.6 nN in the visible region. We have demonstrated the ability to synthesize and characterize bis-Cu(I)-phenanthroline-2-acetamide. In addition, the TD-DFT calculations predict an observable shift in the visible region of the UV-vis spectrum. This indicates that transition metal complexes are feasible candidates as mechanophores and are worthy of further exploration as to their potential role in a new subclass of mechanochromic indicators.

3.
Inorg Chem ; 59(2): 1104-1116, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31891259

ABSTRACT

The electronic structure of three single-atom bridged diiron octapropylporphyrazine complexes (FePzPr8)2X having Fe(III)-O-Fe(III), Fe(III)-N-Fe(IV) and Fe(IV)-C-Fe(IV) structural units was investigated by Mössbauer spectroscopy and density functional theory (DFT) calculations. In this series, the isomer shift values decrease, whereas the values of quadrupole splitting become progressively greater indicating the increase of covalency of Fe-X bond in the µ-oxo, µ-nitrido, µ-carbido row. The Mössbauer data point to low-spin systems for the three complexes, and calculated data with B3LYP-D3 show a singlet state for µ-oxo and µ-carbido and a doublet state for µ-nitrido complexes. An excellent agreement was obtained between B3LYP-D3 optimized geometries and X-ray structural data. Among (FePzPr8)2X complexes, µ-oxo diiron species showed a higher reactivity in the cyclopropanation of styrene by ethyl diazoacetate to afford a 95% product yield with 0.1 mol % catalyst loading. A detailed DFT study allowed to get insight into electronic structure of binuclear carbene species and to confirm their involvement into carbene transfer reactions.

4.
Phys Chem Chem Phys ; 17(24): 16204-12, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26035632

ABSTRACT

The two resting forms of the active site of [NiFe] hydrogenase, Ni-A and Ni-B, have significantly different activation kinetics, but reveal nearly identical spectroscopic features which suggest the two states exhibit subtle structural differences. Previous studies have indicated that the states differ by the identity of the bridging ligand between Ni and Fe; proposals include OH(-), OOH(-), H2O, O(2-), accompanied by modified cysteine residues. In this study, we use single crystal ENDOR spectroscopy and quantum chemical calculations within the framework of density functional theory (DFT) to calculate vibrational frequencies, (1)H and (17)O hyperfine coupling constants and g values with the aim to compare these data to experimental results obtained by crystallography, FTIR and EPR/ENDOR spectroscopy. We find that the Ni-A and Ni-B states are constitutional isomers that differ in their fine structural details. Calculated vibrational frequencies for the cyano and carbonyl ligands and (1)H and (17)O hyperfine coupling constants indicate that the bridging ligand in both Ni-A and Ni-B is indeed an OH(-) ligand. The difference in the isotropic hyperfine coupling constants of the ß-CH2 protons of Cys-549 is sensitive to the orientation of Cys-549; a difference of 0.5 MHz is observed experimentally for Ni-A and 1.9 MHz for Ni-B, which results from a rotation of 7 degrees about the Cα-Cß-Sγ-Ni dihedral angle. Likewise, the difference of the intermediate g value is correlated with a rotation of Cys-546 of about 10 degrees.

SELECTION OF CITATIONS
SEARCH DETAIL
...